Reconhecimento de caracteres alfanuméricos de placas em imagens de veículos

Sistemas de visão artificial são cada vez mais usados para auxiliar seres humanos a realizar diferentes tarefas. Estes sistemas são capazes de reconhecer padrões em imagens complexas. Técnicas de visão computacional têm encontrado crescente aplicação em estudos e sistemas de controle e monitoração d...

Full description

Bibliographic Details
Main Author: Campos, Tatiane Jesus de
Other Authors: Bampi, Sergio
Format: Others
Language:Portuguese
Published: 2007
Subjects:
Online Access:http://hdl.handle.net/10183/2329
id ndltd-IBICT-oai-lume56.ufrgs.br-10183-2329
record_format oai_dc
spelling ndltd-IBICT-oai-lume56.ufrgs.br-10183-23292018-09-30T03:57:32Z Reconhecimento de caracteres alfanuméricos de placas em imagens de veículos Campos, Tatiane Jesus de Bampi, Sergio Susin, Altamiro Amadeu Computação gráfica Visao computacional Processamento : Imagem Reconhecimento : Caracteres Redes neurais Sistemas de visão artificial são cada vez mais usados para auxiliar seres humanos a realizar diferentes tarefas. Estes sistemas são capazes de reconhecer padrões em imagens complexas. Técnicas de visão computacional têm encontrado crescente aplicação em estudos e sistemas de controle e monitoração de tráfego de automóveis. Uma das áreas de pesquisa que tem sido objeto de estudo por diferentes grupos é a leitura automática de placas de matrículas como forma de detectar transgressores, encontrar carros roubados ou efetuar estudos de origem/destino [BAR99]. Com o constante crescimento do volume de tráfego de automóvel e a limitada capacidade dos sensores convencionais, especialistas da área recorrem a técnicas de identificação automática de veículos para obter dados relativos ao escoamento de tráfego. A identificação automática de veículos tem tido essencialmente duas abordagens distintas: a utilização de transponders e a utilização de técnicas de visão computacional [INI85] . Estas são essencialmente úteis em casos em que não é viável obrigar os motoristas a instalar transponders em seus automóveis. No entanto, essas técnicas são mais sensíveis às condições atmosféricas e de iluminação tais como nevoeiros, chuva intensa, luz noturna, reflexos em superfícies, etc. Este trabalho apresenta um estudo de diversas técnicas de processamento de imagem objetivando o aperfeiçoamento de um sistema de identificação automática de placas de veículos. Este aperfeiçoamento está relacionado com a diminuição do tempo de execução necessário à localização e reconhecimento dos caracteres contidos nas placas dos veículos bem como a melhorar a taxa de sucesso no seu reconhecimento. A primeira versão do sistema de identificação da placas de veículos descrito em [SOU2000], desenvolvido no CPG-EE da UFRGS, denominado SIAV 1.0, localiza e extrai 91,3% das placas corretamente mas apresenta uma taxa de reconhecimento das placas de 37,3%, assim como um tempo de processamento não satisfatório. Neste trabalho, cujo sistema desenvolvido é denominado SIAV 2.0, a imagem é previamente processada através da aplicação de técnicas de realce da imagem. O principal objetivo das técnicas de realce é processar a imagem de modo que o resultado seja mais apropriado para uma aplicação específica do que a imagem original [GON93]. O sistema busca melhorar a qualidade da imagem eliminando ou suavizando sombras e reflexos presentes na cena em virtude da iluminação não controlada. Visando um menor tempo de execução durante o tratamento e análise da imagem um estudo estatístico baseado na distribuição gaussiana foi realizado de maneira a restringir a área de análise a ser processada. O SIAV possui duas redes neurais como ferramentas de reconhecimento de caracteres. A partir da análise dos diferentes modelos de redes neurais empregados na atualidade, foi desenvolvida uma nova arquitetura de rede a ser utilizada pelo SIAV 2.0 que oferece uma taxa de reconhecimento superior a rede neural usada no SIAV 1.0. Visando um melhor tempo de execução, a implementação em hardware dedicado para este modelo é abordado. Os testes foram realizados com três bancos de imagens obtidas por câmeras diferentes, inclusive por dispositivo "pardal" comercial. Estes testes foram realizados para verificar a efetividade dos algoritmos aperfeiçoados. 2007-06-06T17:21:27Z 2001 info:eu-repo/semantics/publishedVersion info:eu-repo/semantics/masterThesis http://hdl.handle.net/10183/2329 000318050 por info:eu-repo/semantics/openAccess application/pdf reponame:Biblioteca Digital de Teses e Dissertações da UFRGS instname:Universidade Federal do Rio Grande do Sul instacron:UFRGS
collection NDLTD
language Portuguese
format Others
sources NDLTD
topic Computação gráfica
Visao computacional
Processamento : Imagem
Reconhecimento : Caracteres
Redes neurais
spellingShingle Computação gráfica
Visao computacional
Processamento : Imagem
Reconhecimento : Caracteres
Redes neurais
Campos, Tatiane Jesus de
Reconhecimento de caracteres alfanuméricos de placas em imagens de veículos
description Sistemas de visão artificial são cada vez mais usados para auxiliar seres humanos a realizar diferentes tarefas. Estes sistemas são capazes de reconhecer padrões em imagens complexas. Técnicas de visão computacional têm encontrado crescente aplicação em estudos e sistemas de controle e monitoração de tráfego de automóveis. Uma das áreas de pesquisa que tem sido objeto de estudo por diferentes grupos é a leitura automática de placas de matrículas como forma de detectar transgressores, encontrar carros roubados ou efetuar estudos de origem/destino [BAR99]. Com o constante crescimento do volume de tráfego de automóvel e a limitada capacidade dos sensores convencionais, especialistas da área recorrem a técnicas de identificação automática de veículos para obter dados relativos ao escoamento de tráfego. A identificação automática de veículos tem tido essencialmente duas abordagens distintas: a utilização de transponders e a utilização de técnicas de visão computacional [INI85] . Estas são essencialmente úteis em casos em que não é viável obrigar os motoristas a instalar transponders em seus automóveis. No entanto, essas técnicas são mais sensíveis às condições atmosféricas e de iluminação tais como nevoeiros, chuva intensa, luz noturna, reflexos em superfícies, etc. Este trabalho apresenta um estudo de diversas técnicas de processamento de imagem objetivando o aperfeiçoamento de um sistema de identificação automática de placas de veículos. Este aperfeiçoamento está relacionado com a diminuição do tempo de execução necessário à localização e reconhecimento dos caracteres contidos nas placas dos veículos bem como a melhorar a taxa de sucesso no seu reconhecimento. A primeira versão do sistema de identificação da placas de veículos descrito em [SOU2000], desenvolvido no CPG-EE da UFRGS, denominado SIAV 1.0, localiza e extrai 91,3% das placas corretamente mas apresenta uma taxa de reconhecimento das placas de 37,3%, assim como um tempo de processamento não satisfatório. Neste trabalho, cujo sistema desenvolvido é denominado SIAV 2.0, a imagem é previamente processada através da aplicação de técnicas de realce da imagem. O principal objetivo das técnicas de realce é processar a imagem de modo que o resultado seja mais apropriado para uma aplicação específica do que a imagem original [GON93]. O sistema busca melhorar a qualidade da imagem eliminando ou suavizando sombras e reflexos presentes na cena em virtude da iluminação não controlada. Visando um menor tempo de execução durante o tratamento e análise da imagem um estudo estatístico baseado na distribuição gaussiana foi realizado de maneira a restringir a área de análise a ser processada. O SIAV possui duas redes neurais como ferramentas de reconhecimento de caracteres. A partir da análise dos diferentes modelos de redes neurais empregados na atualidade, foi desenvolvida uma nova arquitetura de rede a ser utilizada pelo SIAV 2.0 que oferece uma taxa de reconhecimento superior a rede neural usada no SIAV 1.0. Visando um melhor tempo de execução, a implementação em hardware dedicado para este modelo é abordado. Os testes foram realizados com três bancos de imagens obtidas por câmeras diferentes, inclusive por dispositivo "pardal" comercial. Estes testes foram realizados para verificar a efetividade dos algoritmos aperfeiçoados.
author2 Bampi, Sergio
author_facet Bampi, Sergio
Campos, Tatiane Jesus de
author Campos, Tatiane Jesus de
author_sort Campos, Tatiane Jesus de
title Reconhecimento de caracteres alfanuméricos de placas em imagens de veículos
title_short Reconhecimento de caracteres alfanuméricos de placas em imagens de veículos
title_full Reconhecimento de caracteres alfanuméricos de placas em imagens de veículos
title_fullStr Reconhecimento de caracteres alfanuméricos de placas em imagens de veículos
title_full_unstemmed Reconhecimento de caracteres alfanuméricos de placas em imagens de veículos
title_sort reconhecimento de caracteres alfanuméricos de placas em imagens de veículos
publishDate 2007
url http://hdl.handle.net/10183/2329
work_keys_str_mv AT campostatianejesusde reconhecimentodecaracteresalfanumericosdeplacasemimagensdeveiculos
_version_ 1718744134851756032