Sobre somas infnitas e uma forma recursiva para a soma da série Zeta (2p) de Riemann

Submitted by Luciana Ferreira (lucgeral@gmail.com) on 2016-02-23T11:48:48Z No. of bitstreams: 2 Dissertação - Uender Barbosa de Souza - 2015.pdf: 1080400 bytes, checksum: b157d208d7fefbd962ec5263785ee984 (MD5) license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5) === Approved fo...

Full description

Bibliographic Details
Main Author: Souza, Uender Barbosa de
Other Authors: Smith, Ole Peter
Format: Others
Language:Portuguese
Published: Universidade Federal de Goiás 2016
Subjects:
Online Access:http://repositorio.bc.ufg.br/tede/handle/tede/5264
Description
Summary:Submitted by Luciana Ferreira (lucgeral@gmail.com) on 2016-02-23T11:48:48Z No. of bitstreams: 2 Dissertação - Uender Barbosa de Souza - 2015.pdf: 1080400 bytes, checksum: b157d208d7fefbd962ec5263785ee984 (MD5) license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5) === Approved for entry into archive by Luciana Ferreira (lucgeral@gmail.com) on 2016-02-23T11:50:57Z (GMT) No. of bitstreams: 2 Dissertação - Uender Barbosa de Souza - 2015.pdf: 1080400 bytes, checksum: b157d208d7fefbd962ec5263785ee984 (MD5) license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5) === Made available in DSpace on 2016-02-23T11:50:57Z (GMT). No. of bitstreams: 2 Dissertação - Uender Barbosa de Souza - 2015.pdf: 1080400 bytes, checksum: b157d208d7fefbd962ec5263785ee984 (MD5) license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5) Previous issue date: 2015-04-29 === Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES === This paper presents methods to calculate some in nite sums and use the Fourier series of function f(x) = x2p with p 2 N to get results on the behavior of Zeta(2p) function Riemann, including their sum and rational multiplicity of 2p. === Neste trabalho apresentamos métodos para o cálculo de algumas somas in nitas e usamos a série de Fourier da função f(x) = x2p com p 2 N para obter resultados sobre o comportamento da função Zeta(2p) de Riemann, tais como sua soma e sua multiplicidade racional por 2p.