Classificação de pedestres em imagens degradadas

Submitted by Daniella Sodre (daniella.sodre@ufpe.br) on 2015-03-09T14:45:09Z No. of bitstreams: 2 dissertacao Andre Costa.pdf: 10722387 bytes, checksum: bff242b1a21e34e27f228538f8f5d6b1 (MD5) license_rdf: 1232 bytes, checksum: 66e71c371cc565284e70f40736c94386 (MD5) === Made available in DSpace on 20...

Full description

Bibliographic Details
Main Author: Costa, André Fonseca
Other Authors: Ren, Tsang Ing
Language:br
Published: Universidade Federal de Pernambuco 2015
Subjects:
HOG
LBP
CSS
LTP
SVM
Online Access:https://repositorio.ufpe.br/handle/123456789/11505
id ndltd-IBICT-oai-repositorio.ufpe.br-123456789-11505
record_format oai_dc
spelling ndltd-IBICT-oai-repositorio.ufpe.br-123456789-115052019-01-21T19:15:44Z Classificação de pedestres em imagens degradadas Costa, André Fonseca Ren, Tsang Ing Cavalcanti, George Darmiton da Cunha Classificação de Pedestres Degradação de Imagem HOG LBP CSS LGIP LTP AdaBoost SVM Submitted by Daniella Sodre (daniella.sodre@ufpe.br) on 2015-03-09T14:45:09Z No. of bitstreams: 2 dissertacao Andre Costa.pdf: 10722387 bytes, checksum: bff242b1a21e34e27f228538f8f5d6b1 (MD5) license_rdf: 1232 bytes, checksum: 66e71c371cc565284e70f40736c94386 (MD5) Made available in DSpace on 2015-03-09T14:45:10Z (GMT). No. of bitstreams: 2 dissertacao Andre Costa.pdf: 10722387 bytes, checksum: bff242b1a21e34e27f228538f8f5d6b1 (MD5) license_rdf: 1232 bytes, checksum: 66e71c371cc565284e70f40736c94386 (MD5) Previous issue date: 2013-11-25 Capes Um detector de pedestres básico geralmente possui dois componentes principais: um que seleciona regiões da imagem que possivelmente contêm um pedestre (gerador de candidatos) e outro que classifica estas regiões em grupos de pedestres e não-pedestres (classificador). Estes classificadores normalmente baseiam-se em extratores de características, que são transformações que alteram a intensidade ou cor original dos pixels de uma imagem em uma nova representação, para ressaltar algum tipo de conhecimento sobre o conteúdo da imagem. Quando o ambiente é não-controlado, fatores externos podem influenciar negativamente no desempenho do classificador. Baixa resolução, ruído, desfoque e oclusão são alguns efeitos que podem ser gerados por estes fatores, degradando a qualidade das imagens obtidas e, consequentemente, das características extraídas. Esta dissertação propõe-se a avaliar como extratores de características comportam-se nesse tipo de ambiente. Estes cinco tipos de degradação foram simulados nas bases de imagem usadas nos experimentos: INRIA Person e Caltech Pedestrian. Como estamos interessados apenas na etapa de classificação, as imagens foram transformadas em janelas de tamanho fixo na etapa de pré-processamento. Os experimentos usam uma combinação de extratores de características (HOG, LBP, CSS, LGIP e LTP) e modelos de aprendizagem (AdaBoost e SVM linear) para formar classificadores. Os classificadores foram treinados com as imagens intactas e testados com imagens em diversos níveis de degradação. O HOG (42%) e LTP (54%) foram superiores aos demais em aproximadamente metade dos pontos de teste na INRIA Person e Caltech Pedestrian, respectivamente. Foi confirmada a queda de desempenho do LBP quando exposto a ruído, mostrando que o LGIP e o LTP amenizam isso. Também observou-se que o CSS é robusto a ruído, mas gera características fracas no geral. Por fim, notou-se que classificadores que combinam mais de um extrator de características foram superiores aos individuais em boa parte dos pontos de teste. Combinando-se todos os extratores, tem-se um classificador superior em 95,8% das situações ao criado somente com o melhor extrator no geral (HOG, na base da INRIA, e LTP, na base da Caltech). 2015-03-09T14:45:10Z 2015-03-09T14:45:10Z 2013-11-25 info:eu-repo/semantics/publishedVersion info:eu-repo/semantics/masterThesis COSTA, André Fonseca. Classificação de pedestres em imagens degradadas. Recife, 2013. 87 f. Dissertação (mestrado) - UFPE, Centro de Informática, Programa de Pós-graduação em Ciência da Computação, 2013. https://repositorio.ufpe.br/handle/123456789/11505 br Attribution-NonCommercial-NoDerivs 3.0 Brazil http://creativecommons.org/licenses/by-nc-nd/3.0/br/ info:eu-repo/semantics/openAccess Universidade Federal de Pernambuco reponame:Repositório Institucional da UFPE instname:Universidade Federal de Pernambuco instacron:UFPE
collection NDLTD
language br
sources NDLTD
topic Classificação de Pedestres
Degradação de Imagem
HOG
LBP
CSS
LGIP
LTP
AdaBoost
SVM
spellingShingle Classificação de Pedestres
Degradação de Imagem
HOG
LBP
CSS
LGIP
LTP
AdaBoost
SVM
Costa, André Fonseca
Classificação de pedestres em imagens degradadas
description Submitted by Daniella Sodre (daniella.sodre@ufpe.br) on 2015-03-09T14:45:09Z No. of bitstreams: 2 dissertacao Andre Costa.pdf: 10722387 bytes, checksum: bff242b1a21e34e27f228538f8f5d6b1 (MD5) license_rdf: 1232 bytes, checksum: 66e71c371cc565284e70f40736c94386 (MD5) === Made available in DSpace on 2015-03-09T14:45:10Z (GMT). No. of bitstreams: 2 dissertacao Andre Costa.pdf: 10722387 bytes, checksum: bff242b1a21e34e27f228538f8f5d6b1 (MD5) license_rdf: 1232 bytes, checksum: 66e71c371cc565284e70f40736c94386 (MD5) Previous issue date: 2013-11-25 === Capes === Um detector de pedestres básico geralmente possui dois componentes principais: um que seleciona regiões da imagem que possivelmente contêm um pedestre (gerador de candidatos) e outro que classifica estas regiões em grupos de pedestres e não-pedestres (classificador). Estes classificadores normalmente baseiam-se em extratores de características, que são transformações que alteram a intensidade ou cor original dos pixels de uma imagem em uma nova representação, para ressaltar algum tipo de conhecimento sobre o conteúdo da imagem. Quando o ambiente é não-controlado, fatores externos podem influenciar negativamente no desempenho do classificador. Baixa resolução, ruído, desfoque e oclusão são alguns efeitos que podem ser gerados por estes fatores, degradando a qualidade das imagens obtidas e, consequentemente, das características extraídas. Esta dissertação propõe-se a avaliar como extratores de características comportam-se nesse tipo de ambiente. Estes cinco tipos de degradação foram simulados nas bases de imagem usadas nos experimentos: INRIA Person e Caltech Pedestrian. Como estamos interessados apenas na etapa de classificação, as imagens foram transformadas em janelas de tamanho fixo na etapa de pré-processamento. Os experimentos usam uma combinação de extratores de características (HOG, LBP, CSS, LGIP e LTP) e modelos de aprendizagem (AdaBoost e SVM linear) para formar classificadores. Os classificadores foram treinados com as imagens intactas e testados com imagens em diversos níveis de degradação. O HOG (42%) e LTP (54%) foram superiores aos demais em aproximadamente metade dos pontos de teste na INRIA Person e Caltech Pedestrian, respectivamente. Foi confirmada a queda de desempenho do LBP quando exposto a ruído, mostrando que o LGIP e o LTP amenizam isso. Também observou-se que o CSS é robusto a ruído, mas gera características fracas no geral. Por fim, notou-se que classificadores que combinam mais de um extrator de características foram superiores aos individuais em boa parte dos pontos de teste. Combinando-se todos os extratores, tem-se um classificador superior em 95,8% das situações ao criado somente com o melhor extrator no geral (HOG, na base da INRIA, e LTP, na base da Caltech).
author2 Ren, Tsang Ing
author_facet Ren, Tsang Ing
Costa, André Fonseca
author Costa, André Fonseca
author_sort Costa, André Fonseca
title Classificação de pedestres em imagens degradadas
title_short Classificação de pedestres em imagens degradadas
title_full Classificação de pedestres em imagens degradadas
title_fullStr Classificação de pedestres em imagens degradadas
title_full_unstemmed Classificação de pedestres em imagens degradadas
title_sort classificação de pedestres em imagens degradadas
publisher Universidade Federal de Pernambuco
publishDate 2015
url https://repositorio.ufpe.br/handle/123456789/11505
work_keys_str_mv AT costaandrefonseca classificacaodepedestresemimagensdegradadas
_version_ 1718863062734209024