Projeto e implementação em VLSI de uma rede neural auto-organizavel usando sintese automatica de auto nivel

Orientador: Furio Damiani === Tese (doutorado) - Universidade Estadual de Campinas, Faculdade de Engenharia Eletrica === Made available in DSpace on 2018-07-23T02:58:50Z (GMT). No. of bitstreams: 1 JaraPerez_MarceloArturo_D.pdf: 13161407 bytes, checksum: 06cc03b52bc981c0309838ebf8cd7fa2 (MD5) Prev...

Full description

Bibliographic Details
Main Author: Jara Perez, Marcelo Arturo
Other Authors: UNIVERSIDADE ESTADUAL DE CAMPINAS
Format: Others
Language:Portuguese
Published: [s.n.] 1997
Subjects:
Online Access:JARA PEREZ, Marcelo Arturo. Projeto e implementação em VLSI de uma rede neural auto-organizavel usando sintese automatica de auto nivel. 1997. 155f. Tese (doutorado) - Universidade Estadual de Campinas, Faculdade de Engenharia Eletrica, Campinas, SP. Disponível em: <http://www.repositorio.unicamp.br/handle/REPOSIP/260403>. Acesso em: 22 jul. 2018.
http://repositorio.unicamp.br/jspui/handle/REPOSIP/260403
id ndltd-IBICT-oai-repositorio.unicamp.br-REPOSIP-260403
record_format oai_dc
collection NDLTD
language Portuguese
format Others
sources NDLTD
topic Redes neurais (Computação)
Circuitos integrados digitais
Computadores - Circuitos
Arquitetura de computador
Algoritmos paralelos
spellingShingle Redes neurais (Computação)
Circuitos integrados digitais
Computadores - Circuitos
Arquitetura de computador
Algoritmos paralelos
Jara Perez, Marcelo Arturo
Projeto e implementação em VLSI de uma rede neural auto-organizavel usando sintese automatica de auto nivel
description Orientador: Furio Damiani === Tese (doutorado) - Universidade Estadual de Campinas, Faculdade de Engenharia Eletrica === Made available in DSpace on 2018-07-23T02:58:50Z (GMT). No. of bitstreams: 1 JaraPerez_MarceloArturo_D.pdf: 13161407 bytes, checksum: 06cc03b52bc981c0309838ebf8cd7fa2 (MD5) Previous issue date: 1997 === Resumo: Neste trabalho realiza-se o estudo do algoritmo SOFM (Self-Organizing Feature Map) para a sua Implementação em circuitos digitais ASIC VLSI. Foram projetados e construídos 2 chips: o primeiro implementa uma célula da rede neural e o segundo o bloco WTA (Winner-takes-All). O sistema foi inicialmente simulado com uma linguagem procedural (ANSI-C), construindo-se um programa com interface gráfica para plataforma UNIX. Posteriormente, foi realizada uma descrição em alto nível usando a linguagem VHDL (Very high-speed circuits Hardware Description Language). Em seguida, a descrição foi feita a nível RTL (Register Transfer LeveI) e o circuito foi sintetizado e otimizado seguindo uma metodologia Top-Down. Os circuitos foram implementados em tecnologia digital usando um processo CMOS de 1,2 microns para as células e de 0,8 microns para o bloco WTA. Esses circuitos foram objeto de testes e verificação funcional, para avaliação de seu desempenho. Os resultados permitiram verificar a validade da metodologia Top-Down para o projeto de sistema:; eletrônicos complexos. A frequência máxima de operação das células excede 20 MHz e a do bloco WTA excede 50 MHz. A dissipação de potência para 20 MHz foi de aproximadamente 50 mW para uma célula. Todos os circuitos foram implementados usando ferramentas de projetos(CAD-EDA)da Mentor-Graphics Co,e bibliotecas std-cells CMOS AMS. Observaram-se algumas diferenças entre os resultados das simulações e as medidas experimentais === Abstract: : A Kohonen-based (SOFM - Self-Organizing Feature Map ) artificial neural network was simulated, modelated and hardware implemented in a VLSI circuit. A Top-Down methodological approach was used by using ANSI-C and VHDL (Very High Speed Circuits, Hardware Description Language). The original SOFM algorithm was lightly modified for customizing to the hardware implementation requirements. After a high-level modeling and simulation, a fully-digital VLSI Neuroprocessor chip prototype was designed and manufactured in a CMOS 1.2microns technology. Most of the circuits structures of Neuron were automatically generated from a VHDL RTL description using automatic synthesis, the others were obtained trough conventional schematics procedure. After functional verification, the resulting circuits were optimizated (drived by silicon area minimization) and mappe d to the AMS technology, a 2-level metal process from Austria Mikro Systeme. The Neuron cell has 6 bi-directional 3-bits capability connections, used for neighbours communication, Allowing to implement a hexagonal type dynamic Nc(t) neighbourhood. Both Nc(t) radio and gain Alfa function may be programmed by using a set of registers, allowing high flexibility for studying different SOFM algorithm convergence conditions. A second chip was designed and manufacture dusing a AMS CMOS0.8 microns technology for implementing a competitive on-chip learning. This circuit is part of a WTA (Winner-Takes-All) block used for determine a winner cell in each epoch of the self-organized training phase. Some differences were observed after comparing measures and simulation results === Doutorado === Doutor em Engenharia Elétrica
author2 UNIVERSIDADE ESTADUAL DE CAMPINAS
author_facet UNIVERSIDADE ESTADUAL DE CAMPINAS
Jara Perez, Marcelo Arturo
author Jara Perez, Marcelo Arturo
author_sort Jara Perez, Marcelo Arturo
title Projeto e implementação em VLSI de uma rede neural auto-organizavel usando sintese automatica de auto nivel
title_short Projeto e implementação em VLSI de uma rede neural auto-organizavel usando sintese automatica de auto nivel
title_full Projeto e implementação em VLSI de uma rede neural auto-organizavel usando sintese automatica de auto nivel
title_fullStr Projeto e implementação em VLSI de uma rede neural auto-organizavel usando sintese automatica de auto nivel
title_full_unstemmed Projeto e implementação em VLSI de uma rede neural auto-organizavel usando sintese automatica de auto nivel
title_sort projeto e implementação em vlsi de uma rede neural auto-organizavel usando sintese automatica de auto nivel
publisher [s.n.]
publishDate 1997
url JARA PEREZ, Marcelo Arturo. Projeto e implementação em VLSI de uma rede neural auto-organizavel usando sintese automatica de auto nivel. 1997. 155f. Tese (doutorado) - Universidade Estadual de Campinas, Faculdade de Engenharia Eletrica, Campinas, SP. Disponível em: <http://www.repositorio.unicamp.br/handle/REPOSIP/260403>. Acesso em: 22 jul. 2018.
http://repositorio.unicamp.br/jspui/handle/REPOSIP/260403
work_keys_str_mv AT jaraperezmarceloarturo projetoeimplementacaoemvlsideumaredeneuralautoorganizavelusandosinteseautomaticadeautonivel
_version_ 1718873148950052864
spelling ndltd-IBICT-oai-repositorio.unicamp.br-REPOSIP-2604032019-01-21T20:27:28Z Projeto e implementação em VLSI de uma rede neural auto-organizavel usando sintese automatica de auto nivel Jara Perez, Marcelo Arturo UNIVERSIDADE ESTADUAL DE CAMPINAS Damiani, Furio, 1943-2016 Redes neurais (Computação) Circuitos integrados digitais Computadores - Circuitos Arquitetura de computador Algoritmos paralelos Orientador: Furio Damiani Tese (doutorado) - Universidade Estadual de Campinas, Faculdade de Engenharia Eletrica Made available in DSpace on 2018-07-23T02:58:50Z (GMT). No. of bitstreams: 1 JaraPerez_MarceloArturo_D.pdf: 13161407 bytes, checksum: 06cc03b52bc981c0309838ebf8cd7fa2 (MD5) Previous issue date: 1997 Resumo: Neste trabalho realiza-se o estudo do algoritmo SOFM (Self-Organizing Feature Map) para a sua Implementação em circuitos digitais ASIC VLSI. Foram projetados e construídos 2 chips: o primeiro implementa uma célula da rede neural e o segundo o bloco WTA (Winner-takes-All). O sistema foi inicialmente simulado com uma linguagem procedural (ANSI-C), construindo-se um programa com interface gráfica para plataforma UNIX. Posteriormente, foi realizada uma descrição em alto nível usando a linguagem VHDL (Very high-speed circuits Hardware Description Language). Em seguida, a descrição foi feita a nível RTL (Register Transfer LeveI) e o circuito foi sintetizado e otimizado seguindo uma metodologia Top-Down. Os circuitos foram implementados em tecnologia digital usando um processo CMOS de 1,2 microns para as células e de 0,8 microns para o bloco WTA. Esses circuitos foram objeto de testes e verificação funcional, para avaliação de seu desempenho. Os resultados permitiram verificar a validade da metodologia Top-Down para o projeto de sistema:; eletrônicos complexos. A frequência máxima de operação das células excede 20 MHz e a do bloco WTA excede 50 MHz. A dissipação de potência para 20 MHz foi de aproximadamente 50 mW para uma célula. Todos os circuitos foram implementados usando ferramentas de projetos(CAD-EDA)da Mentor-Graphics Co,e bibliotecas std-cells CMOS AMS. Observaram-se algumas diferenças entre os resultados das simulações e as medidas experimentais Abstract: : A Kohonen-based (SOFM - Self-Organizing Feature Map ) artificial neural network was simulated, modelated and hardware implemented in a VLSI circuit. A Top-Down methodological approach was used by using ANSI-C and VHDL (Very High Speed Circuits, Hardware Description Language). The original SOFM algorithm was lightly modified for customizing to the hardware implementation requirements. After a high-level modeling and simulation, a fully-digital VLSI Neuroprocessor chip prototype was designed and manufactured in a CMOS 1.2microns technology. Most of the circuits structures of Neuron were automatically generated from a VHDL RTL description using automatic synthesis, the others were obtained trough conventional schematics procedure. After functional verification, the resulting circuits were optimizated (drived by silicon area minimization) and mappe d to the AMS technology, a 2-level metal process from Austria Mikro Systeme. The Neuron cell has 6 bi-directional 3-bits capability connections, used for neighbours communication, Allowing to implement a hexagonal type dynamic Nc(t) neighbourhood. Both Nc(t) radio and gain Alfa function may be programmed by using a set of registers, allowing high flexibility for studying different SOFM algorithm convergence conditions. A second chip was designed and manufacture dusing a AMS CMOS0.8 microns technology for implementing a competitive on-chip learning. This circuit is part of a WTA (Winner-Takes-All) block used for determine a winner cell in each epoch of the self-organized training phase. Some differences were observed after comparing measures and simulation results Doutorado Doutor em Engenharia Elétrica 1997 2018-07-23T02:58:50Z 2018-07-23T02:58:50Z 1997-08-04T00:00:00Z info:eu-repo/semantics/publishedVersion info:eu-repo/semantics/doctoralThesis JARA PEREZ, Marcelo Arturo. Projeto e implementação em VLSI de uma rede neural auto-organizavel usando sintese automatica de auto nivel. 1997. 155f. Tese (doutorado) - Universidade Estadual de Campinas, Faculdade de Engenharia Eletrica, Campinas, SP. Disponível em: <http://www.repositorio.unicamp.br/handle/REPOSIP/260403>. Acesso em: 22 jul. 2018. http://repositorio.unicamp.br/jspui/handle/REPOSIP/260403 por info:eu-repo/semantics/openAccess 155f. : il. application/pdf [s.n.] Universidade Estadual de Campinas. Faculdade de Engenharia Elétrica Programa de Pós-Graduação em Engenharia Elétrica reponame:Repositório Institucional da Unicamp instname:Universidade Estadual de Campinas instacron:UNICAMP