Segmentação de displasias corticais focais em imagens de ressonancia magnetica do cerebro humano

Orientador: Alexandre Xavier Falcão === Tese (doutorado) - Universidade Estadual de Campinas, Instituto de Computação === Made available in DSpace on 2018-08-11T00:57:45Z (GMT). No. of bitstreams: 1 Bergo_FelipePauloGuazzi_D.pdf: 2382300 bytes, checksum: 3e5042ab5a985d33abeae92105931b14 (MD5) Prev...

Full description

Bibliographic Details
Main Author: Bergo, Felipe Paulo Guazzi, 1978-
Other Authors: UNIVERSIDADE ESTADUAL DE CAMPINAS
Format: Others
Language:Portuguese
Published: [s.n.] 2008
Subjects:
Online Access:BERGO, Felipe Paulo Guazzi. Segmentação de displasias corticais focais em imagens de ressonancia magnetica do cerebro humano. 2008. 104 p. Tese (doutorado) - Universidade Estadual de Campinas, Instituto de Computação, Campinas, SP. Disponível em: <http://www.repositorio.unicamp.br/handle/REPOSIP/276092>. Acesso em: 10 ago. 2018.
http://repositorio.unicamp.br/jspui/handle/REPOSIP/276092
id ndltd-IBICT-oai-repositorio.unicamp.br-REPOSIP-276092
record_format oai_dc
collection NDLTD
language Portuguese
format Others
sources NDLTD
topic Processamento de imagens
Ressonância magnética
Neurociências
Epilepsia
Image processing
Magnetic resonance
Neuroscience
Epilepsy
spellingShingle Processamento de imagens
Ressonância magnética
Neurociências
Epilepsia
Image processing
Magnetic resonance
Neuroscience
Epilepsy
Bergo, Felipe Paulo Guazzi, 1978-
Segmentação de displasias corticais focais em imagens de ressonancia magnetica do cerebro humano
description Orientador: Alexandre Xavier Falcão === Tese (doutorado) - Universidade Estadual de Campinas, Instituto de Computação === Made available in DSpace on 2018-08-11T00:57:45Z (GMT). No. of bitstreams: 1 Bergo_FelipePauloGuazzi_D.pdf: 2382300 bytes, checksum: 3e5042ab5a985d33abeae92105931b14 (MD5) Previous issue date: 2008 === Resumo: O diagnóstico médico por imagem é uma tarefa complexa, que depende da avaliação subjetiva de um grande volume de dados. Diversas possibilidades de patologia não são consideradas por limitação de tempo e especialização dos profissionais da área médica, mesmo quando os exames adequados estão disponíveis. O desenvolvimento de técnicas automáticas de auxílio ao diagnóstico é um avanço importante para simplificar a tarefa do médico, descartando um grande número de patologias ou indicando as localizações mais prováveis de eventuais anormalidades patológicas. Displasias corticais focais (FCDs) estão associadas à epilepsia, e são uma das causas mais comuns de casos de epilepsia refratária, em que o tratamento medicamentoso não é suficiente para controlar as crises. As FCDs são lesões que geram variações locais e sutis na aparência do tecido em imagens de ressonância magnética (RM). Seu diagnóstico é em geral uma tarefa difícil e subjetiva. Detecção e localização de eventuais lesões de FCD são passos fundamentais para o planejamento do tratamento do paciente. Neste trabalho propomos um método para segmentação automática de FCDs em imagens de ressonância magnética (RM) tri-dimensional do cérebro humano. Desenvolvemos novas técnicas de segmentação e análise de imagens, automatizamos uma técnica previamente interativa (reformatação curvilinear) e, através de classificação por aprendizado supervisionado, obtivemos detecção de 100% das lesões, com cobertura de 76,9% dos voxels lesionais. Este resultado é um pouco melhor que o estado da arte, embora ainda não seja uma solução ideal, solidamente validada, para o problema === Abstract: Medical diagnosis from imaging techniques is a complex task that depends on subjective evaluation of a large volume of data. Many pathologies are often not considered due to time and experience restrictions of the medical crew, even when the imaging data are readily available. The development of computer-aided diagnosis techniques greatly simplify the physician¿s work, by discarding a large number of pathologies and/or pointing out the most probable locations of pathological abnormalities. Focal cortical displasia (FCDs) are associated to epilepsy, and are one of the most common causes of refractory epilepsy, where drug-based treatment does not eliminate the seizures. FCDs are lesions that lead to subtle, localized appearance variations of brain tissue in magnetic resonance (MR) imaging. Their diagnosis is difficult, tedious and subjective. Detection and localiation of FCD lesions are key steps for treatment planning. In this work we propose a method for automatic segmentation of FCDs in tridimensional magnetic MR images of the human brain. We developed new image segmentation and image analysis techniques, automated a previously interactive technique (curvilinear reformatting) and, through classification by supervised learning, achieved detection of 100% of the lesions, with 76,9% coverage of the lesional voxels. This result is slightly better than the state-of-the-art, even though it still is has not been thoroughly validated on a large data base and can still be improved. === Doutorado === Doutor em Ciência da Computação
author2 UNIVERSIDADE ESTADUAL DE CAMPINAS
author_facet UNIVERSIDADE ESTADUAL DE CAMPINAS
Bergo, Felipe Paulo Guazzi, 1978-
author Bergo, Felipe Paulo Guazzi, 1978-
author_sort Bergo, Felipe Paulo Guazzi, 1978-
title Segmentação de displasias corticais focais em imagens de ressonancia magnetica do cerebro humano
title_short Segmentação de displasias corticais focais em imagens de ressonancia magnetica do cerebro humano
title_full Segmentação de displasias corticais focais em imagens de ressonancia magnetica do cerebro humano
title_fullStr Segmentação de displasias corticais focais em imagens de ressonancia magnetica do cerebro humano
title_full_unstemmed Segmentação de displasias corticais focais em imagens de ressonancia magnetica do cerebro humano
title_sort segmentação de displasias corticais focais em imagens de ressonancia magnetica do cerebro humano
publisher [s.n.]
publishDate 2008
url BERGO, Felipe Paulo Guazzi. Segmentação de displasias corticais focais em imagens de ressonancia magnetica do cerebro humano. 2008. 104 p. Tese (doutorado) - Universidade Estadual de Campinas, Instituto de Computação, Campinas, SP. Disponível em: <http://www.repositorio.unicamp.br/handle/REPOSIP/276092>. Acesso em: 10 ago. 2018.
http://repositorio.unicamp.br/jspui/handle/REPOSIP/276092
work_keys_str_mv AT bergofelipepauloguazzi1978 segmentacaodedisplasiascorticaisfocaisemimagensderessonanciamagneticadocerebrohumano
AT bergofelipepauloguazzi1978 focalcorticaldisplasiasegmentationinmagneticresonanceimagesofthehumanbrain
_version_ 1718879515354071040
spelling ndltd-IBICT-oai-repositorio.unicamp.br-REPOSIP-2760922019-01-21T20:59:02Z Segmentação de displasias corticais focais em imagens de ressonancia magnetica do cerebro humano Focal cortical displasia segmentation in magnetic resonance images of the human brain Bergo, Felipe Paulo Guazzi, 1978- UNIVERSIDADE ESTADUAL DE CAMPINAS Falcão, Alexandre Xavier, 1966- Furuie, Sergio Shiguemi Traina, Agma Juci Machado Cendes, Fernando Lotufo, Roberto de Alencar Processamento de imagens Ressonância magnética Neurociências Epilepsia Image processing Magnetic resonance Neuroscience Epilepsy Orientador: Alexandre Xavier Falcão Tese (doutorado) - Universidade Estadual de Campinas, Instituto de Computação Made available in DSpace on 2018-08-11T00:57:45Z (GMT). No. of bitstreams: 1 Bergo_FelipePauloGuazzi_D.pdf: 2382300 bytes, checksum: 3e5042ab5a985d33abeae92105931b14 (MD5) Previous issue date: 2008 Resumo: O diagnóstico médico por imagem é uma tarefa complexa, que depende da avaliação subjetiva de um grande volume de dados. Diversas possibilidades de patologia não são consideradas por limitação de tempo e especialização dos profissionais da área médica, mesmo quando os exames adequados estão disponíveis. O desenvolvimento de técnicas automáticas de auxílio ao diagnóstico é um avanço importante para simplificar a tarefa do médico, descartando um grande número de patologias ou indicando as localizações mais prováveis de eventuais anormalidades patológicas. Displasias corticais focais (FCDs) estão associadas à epilepsia, e são uma das causas mais comuns de casos de epilepsia refratária, em que o tratamento medicamentoso não é suficiente para controlar as crises. As FCDs são lesões que geram variações locais e sutis na aparência do tecido em imagens de ressonância magnética (RM). Seu diagnóstico é em geral uma tarefa difícil e subjetiva. Detecção e localização de eventuais lesões de FCD são passos fundamentais para o planejamento do tratamento do paciente. Neste trabalho propomos um método para segmentação automática de FCDs em imagens de ressonância magnética (RM) tri-dimensional do cérebro humano. Desenvolvemos novas técnicas de segmentação e análise de imagens, automatizamos uma técnica previamente interativa (reformatação curvilinear) e, através de classificação por aprendizado supervisionado, obtivemos detecção de 100% das lesões, com cobertura de 76,9% dos voxels lesionais. Este resultado é um pouco melhor que o estado da arte, embora ainda não seja uma solução ideal, solidamente validada, para o problema Abstract: Medical diagnosis from imaging techniques is a complex task that depends on subjective evaluation of a large volume of data. Many pathologies are often not considered due to time and experience restrictions of the medical crew, even when the imaging data are readily available. The development of computer-aided diagnosis techniques greatly simplify the physician¿s work, by discarding a large number of pathologies and/or pointing out the most probable locations of pathological abnormalities. Focal cortical displasia (FCDs) are associated to epilepsy, and are one of the most common causes of refractory epilepsy, where drug-based treatment does not eliminate the seizures. FCDs are lesions that lead to subtle, localized appearance variations of brain tissue in magnetic resonance (MR) imaging. Their diagnosis is difficult, tedious and subjective. Detection and localiation of FCD lesions are key steps for treatment planning. In this work we propose a method for automatic segmentation of FCDs in tridimensional magnetic MR images of the human brain. We developed new image segmentation and image analysis techniques, automated a previously interactive technique (curvilinear reformatting) and, through classification by supervised learning, achieved detection of 100% of the lesions, with 76,9% coverage of the lesional voxels. This result is slightly better than the state-of-the-art, even though it still is has not been thoroughly validated on a large data base and can still be improved. Doutorado Doutor em Ciência da Computação 2008 2018-08-11T00:57:45Z 2018-08-11T00:57:45Z 2008-02-04T00:00:00Z info:eu-repo/semantics/publishedVersion info:eu-repo/semantics/doctoralThesis BERGO, Felipe Paulo Guazzi. Segmentação de displasias corticais focais em imagens de ressonancia magnetica do cerebro humano. 2008. 104 p. Tese (doutorado) - Universidade Estadual de Campinas, Instituto de Computação, Campinas, SP. Disponível em: <http://www.repositorio.unicamp.br/handle/REPOSIP/276092>. Acesso em: 10 ago. 2018. http://repositorio.unicamp.br/jspui/handle/REPOSIP/276092 por info:eu-repo/semantics/openAccess 104 p. : il. application/octet-stream [s.n.] Universidade Estadual de Campinas. Instituto de Computação Programa de Pós-Graduação em Ciência da Computação reponame:Repositório Institucional da Unicamp instname:Universidade Estadual de Campinas instacron:UNICAMP