Semântica proposicional categórica

Made available in DSpace on 2015-05-14T12:11:59Z (GMT). No. of bitstreams: 1 arquivototal.pdf: 891353 bytes, checksum: 2d056c7f53fdfb7c20586b64874e848d (MD5) Previous issue date: 2010-12-01 === Coordenação de Aperfeiçoamento de Pessoal de Nível Superior === The basic concepts of what later became...

Full description

Bibliographic Details
Main Author: Ferreira, Rodrigo Costa
Other Authors: Queiroz, Giovanni da Silva de
Format: Others
Language:Portuguese
Published: Universidade Federal da Paraí­ba 2015
Subjects:
Online Access:http://tede.biblioteca.ufpb.br:8080/handle/tede/5678
Description
Summary:Made available in DSpace on 2015-05-14T12:11:59Z (GMT). No. of bitstreams: 1 arquivototal.pdf: 891353 bytes, checksum: 2d056c7f53fdfb7c20586b64874e848d (MD5) Previous issue date: 2010-12-01 === Coordenação de Aperfeiçoamento de Pessoal de Nível Superior === The basic concepts of what later became called category theory were introduced in 1945 by Samuel Eilenberg and Saunders Mac Lane. In 1940s, the main applications were originally in the fields of algebraic topology and algebraic abstract. During the 1950s and 1960s, this theory became an important conceptual framework in other many areas of mathematical research, especially in algrebraic homology and algebraic geometry, as shows the works of Daniel M. Kan (1958) and Alexander Grothendieck (1957). Late, questions mathematiclogics about the category theory appears, in particularly, with the publication of the Functorial Semantics of Algebraic Theories (1963) of Francis Willian Lawvere. After, other works are done in the category logic, such as the the current Makkai (1977), Borceux (1994), Goldblatt (2006), and others. As introduction of application of the category theory in logic, this work presents a study on the logic category propositional. The first section of this work, shows to the reader the important concepts to a better understanding of subject: (a) basic components of category theory: categorical constructions, definitions, axiomatic, applications, authors, etc.; (b) certain structures of abstract algebra: monoids, groups, Boolean algebras, etc.; (c) some concepts of mathematical logic: pre-order, partial orderind, equivalence relation, Lindenbaum algebra, etc. The second section, it talk about the properties, structures and relations of category propositional logic. In that section, we interpret the logical connectives of the negation, conjunction, disjunction and implication, as well the Boolean connectives of complement, intersection and union, in the categorical language. Finally, we define a categorical boolean propositional semantics through a Boolean category algebra. === Os conceitos básicos do que mais tarde seria chamado de teoria das categorias são introduzidos no artigo General Theory of Natural Equivalences (1945) de Samuel Eilenberg e Saunders Mac Lane. Já em meados da década de 1940, esta teoria é aplicada com sucesso ao campo da topologia. Ao longo das décadas de 1950 e 1960, a teoria das categorias ostenta importantes mudanças ao enfoque tradicional de diversas áreas da matemática, entre as quais, em especial, a álgebra geométrica e a álgebra homológica, como atestam os pioneiros trabalhos de Daniel M. Kan (1958) e Alexander Grothendieck (1957). Mais tarde, questões lógico-matemáticas emergem em meio a essa teoria, em particular, com a publica ção da Functorial Semantics of Algebraic Theories (1963) de Francis Willian Lawvere. Desde então, diversos outros trabalhos vêm sendo realizados em lógica categórica, como os mais recentes Makkai (1977), Borceux (1994), Goldblatt (2006), entre outros. Como inicialização à aplicação da teoria das categorias à lógica, a presente dissertação aduz um estudo introdutório à lógica proposicional categórica. Em linhas gerais, a primeira parte deste trabalho procura familiarizar o leitor com os conceitos básicos à pesquisa do tema: (a) elementos constitutivos da teoria das categorias : axiomática, construções, aplicações, autores, etc.; (b) algumas estruturas da álgebra abstrata: monóides, grupos, álgebra de Boole, etc.; (c) determinados conceitos da lógica matemática: pré-ordem; ordem parcial; equivalência, álgebra de Lindenbaum, etc. A segunda parte, trata da aproximação da teoria das categorias à lógica proposicional, isto é, investiga as propriedades, estruturas e relações próprias à lógica proposicional categórica. Nesta passagem, há uma reinterpreta ção dos conectivos lógicos da negação, conjunção, disjunção e implicação, bem como dos conectivos booleanos de complemento, interseção e união, em termos categóricos. Na seqüência, estas novas concepções permitem enunciar uma álgebra booleana categórica, por meio da qual, ao final, é construída uma semântica proposicional booleana categórica.