Classificação de dados combinando mapas auto-organizáveis com vizinho informativo mais próximo

Submitted by Rosa Assis (rosa_assis@yahoo.com.br) on 2017-03-21T19:40:25Z No. of bitstreams: 2 LEANDRO JUVENCIO MOREIRA.pdf: 1183496 bytes, checksum: b7b7de6c9a5112b9705c906c6cbdaaec (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) === Approved for entry into archive by P...

Full description

Bibliographic Details
Main Author: Moreira, Lenadro Juvêncio
Other Authors: Silva, Leandro Augusto da
Format: Others
Language:Portuguese
Published: Universidade Presbiteriana Mackenzie 2017
Subjects:
Online Access:http://tede.mackenzie.br/jspui/handle/tede/3122
id ndltd-IBICT-oai-tede.mackenzie.br-tede-3122
record_format oai_dc
collection NDLTD
language Portuguese
format Others
sources NDLTD
topic classificação de dados
geração de protótipos
k vizinhos mais próximos (algoritmo)
mapas auto-organizáveis
vizinho informativo mais próximo (algoritmo)
CNPQ::ENGENHARIAS::ENGENHARIA ELETRICA::TELECOMUNICACOES
spellingShingle classificação de dados
geração de protótipos
k vizinhos mais próximos (algoritmo)
mapas auto-organizáveis
vizinho informativo mais próximo (algoritmo)
CNPQ::ENGENHARIAS::ENGENHARIA ELETRICA::TELECOMUNICACOES
Moreira, Lenadro Juvêncio
Classificação de dados combinando mapas auto-organizáveis com vizinho informativo mais próximo
description Submitted by Rosa Assis (rosa_assis@yahoo.com.br) on 2017-03-21T19:40:25Z No. of bitstreams: 2 LEANDRO JUVENCIO MOREIRA.pdf: 1183496 bytes, checksum: b7b7de6c9a5112b9705c906c6cbdaaec (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) === Approved for entry into archive by Paola Damato (repositorio@mackenzie.br) on 2017-03-22T15:01:23Z (GMT) No. of bitstreams: 2 LEANDRO JUVENCIO MOREIRA.pdf: 1183496 bytes, checksum: b7b7de6c9a5112b9705c906c6cbdaaec (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) === Made available in DSpace on 2017-03-22T15:01:23Z (GMT). No. of bitstreams: 2 LEANDRO JUVENCIO MOREIRA.pdf: 1183496 bytes, checksum: b7b7de6c9a5112b9705c906c6cbdaaec (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) Previous issue date: 2016-12-14 === The data classification is a data mining task with relevant utilization in various areas of application, such as medicine, industry, marketing, financial market, teaching and many others. Although this task is an element search for many autors, there are open issues such as, e.g., in situations where there is so much data, noise data and unbalanced classes. In this way, this work will present a data classifier proposal that combines the SOM (Self-Organizing Map) neural network with INN (Informative Nearest Neighbors). The combination of these two algorithms will be called in this work as SOM-INN. Therefore, the SOM-INN process to classify a new object will be done in a first step with the SOM that has a functionality to map a reduced dataset through an approach that utilizes the prototype generation concept, also called the winning neuron and, in a second step, with the INN algorithm that is used to classify the new object through an approach that finds in the reduced dataset by SOM the most informative object. Were made experiments using 21 public datasets comparing classic data classification algorithms of the literature, from the indicators of reduction training set, accuracy, kappa and time consumed in the classification process. The results obtained show that the proposed SOM-INN algorithm, when compared with the others classifiers of the literature, presents better accuracy in databases where the border region is not well defined. The main differential of the SOM-INN is in the classification time, which is extremely important for real applications. Keywords: data classification; prototype generation; K nearest neighbors; self-organizing === A classificação de dados é uma tarefa da mineração de dados com utilização relevante em diversas áreas de aplicação, tais como, medicina, indústria, marketing, mercado financeiro, ensino e muitas outras. Embora essa tarefa seja elemento de pesquisa de muitos autores, ainda há problemas em aberto como, por exemplo, em situações onde há abundância de dados, dados ruidosos e desbalanceamento de classes. Nesse sentido, este trabalho apresenta uma proposta de classificador de dados em um processo de duas etapas que combina a rede neural SOM (Self-Organizing Maps) com o classificador vizinhos informativos mais próximos ou INN (Informative Nearest Neighbors). A combinação desses dois algoritmos será aqui chamada como SOM-INN. Portanto, o processo de uso do SOM-INN na classificação de um novo objeto será feito em uma primeira etapa com o SOM que tem a funcionalidade de mapear um conjunto reduzido dos dados de treinamento por meio de uma abordagem que utiliza o conceito de geração de protótipo, também denominado de neurônio vencedor e, em uma segunda etapa, com o algoritmo INN que é usado para classificar o novo objeto por meio de uma abordagem que encontra no conjunto de treinamento reduzido pelo SOM os objetos mais informativos. Foram realizados experimentos usando 21 conjuntos de dados públicos, comparando com os algoritmos clássicos da literatura de classificação de dados, a partir dos indicadores de redução do conjunto de treinamento, acurácia, kappa e tempo consumido no processo de classificação. Os resultados obtidos mostram que o algoritmo proposto SOM-INN, quando comparado com outros classificadores da literatura, apresenta acurácia melhor em bases de dados em que a região de fronteira não é bem definida. O principal diferencial do SOM-INN está no tempo de classificação, o que é de suma importância para aplicações reais.
author2 Silva, Leandro Augusto da
author_facet Silva, Leandro Augusto da
Moreira, Lenadro Juvêncio
author Moreira, Lenadro Juvêncio
author_sort Moreira, Lenadro Juvêncio
title Classificação de dados combinando mapas auto-organizáveis com vizinho informativo mais próximo
title_short Classificação de dados combinando mapas auto-organizáveis com vizinho informativo mais próximo
title_full Classificação de dados combinando mapas auto-organizáveis com vizinho informativo mais próximo
title_fullStr Classificação de dados combinando mapas auto-organizáveis com vizinho informativo mais próximo
title_full_unstemmed Classificação de dados combinando mapas auto-organizáveis com vizinho informativo mais próximo
title_sort classificação de dados combinando mapas auto-organizáveis com vizinho informativo mais próximo
publisher Universidade Presbiteriana Mackenzie
publishDate 2017
url http://tede.mackenzie.br/jspui/handle/tede/3122
work_keys_str_mv AT moreiralenadrojuvencio classificacaodedadoscombinandomapasautoorganizaveiscomvizinhoinformativomaisproximo
_version_ 1718930160237936640
spelling ndltd-IBICT-oai-tede.mackenzie.br-tede-31222019-01-22T01:05:21Z Classificação de dados combinando mapas auto-organizáveis com vizinho informativo mais próximo Moreira, Lenadro Juvêncio Silva, Leandro Augusto da Silva, Leandro Nunes de Castro Pasti, Rodrigo classificação de dados geração de protótipos k vizinhos mais próximos (algoritmo) mapas auto-organizáveis vizinho informativo mais próximo (algoritmo) CNPQ::ENGENHARIAS::ENGENHARIA ELETRICA::TELECOMUNICACOES Submitted by Rosa Assis (rosa_assis@yahoo.com.br) on 2017-03-21T19:40:25Z No. of bitstreams: 2 LEANDRO JUVENCIO MOREIRA.pdf: 1183496 bytes, checksum: b7b7de6c9a5112b9705c906c6cbdaaec (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) Approved for entry into archive by Paola Damato (repositorio@mackenzie.br) on 2017-03-22T15:01:23Z (GMT) No. of bitstreams: 2 LEANDRO JUVENCIO MOREIRA.pdf: 1183496 bytes, checksum: b7b7de6c9a5112b9705c906c6cbdaaec (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) Made available in DSpace on 2017-03-22T15:01:23Z (GMT). No. of bitstreams: 2 LEANDRO JUVENCIO MOREIRA.pdf: 1183496 bytes, checksum: b7b7de6c9a5112b9705c906c6cbdaaec (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) Previous issue date: 2016-12-14 The data classification is a data mining task with relevant utilization in various areas of application, such as medicine, industry, marketing, financial market, teaching and many others. Although this task is an element search for many autors, there are open issues such as, e.g., in situations where there is so much data, noise data and unbalanced classes. In this way, this work will present a data classifier proposal that combines the SOM (Self-Organizing Map) neural network with INN (Informative Nearest Neighbors). The combination of these two algorithms will be called in this work as SOM-INN. Therefore, the SOM-INN process to classify a new object will be done in a first step with the SOM that has a functionality to map a reduced dataset through an approach that utilizes the prototype generation concept, also called the winning neuron and, in a second step, with the INN algorithm that is used to classify the new object through an approach that finds in the reduced dataset by SOM the most informative object. Were made experiments using 21 public datasets comparing classic data classification algorithms of the literature, from the indicators of reduction training set, accuracy, kappa and time consumed in the classification process. The results obtained show that the proposed SOM-INN algorithm, when compared with the others classifiers of the literature, presents better accuracy in databases where the border region is not well defined. The main differential of the SOM-INN is in the classification time, which is extremely important for real applications. Keywords: data classification; prototype generation; K nearest neighbors; self-organizing A classificação de dados é uma tarefa da mineração de dados com utilização relevante em diversas áreas de aplicação, tais como, medicina, indústria, marketing, mercado financeiro, ensino e muitas outras. Embora essa tarefa seja elemento de pesquisa de muitos autores, ainda há problemas em aberto como, por exemplo, em situações onde há abundância de dados, dados ruidosos e desbalanceamento de classes. Nesse sentido, este trabalho apresenta uma proposta de classificador de dados em um processo de duas etapas que combina a rede neural SOM (Self-Organizing Maps) com o classificador vizinhos informativos mais próximos ou INN (Informative Nearest Neighbors). A combinação desses dois algoritmos será aqui chamada como SOM-INN. Portanto, o processo de uso do SOM-INN na classificação de um novo objeto será feito em uma primeira etapa com o SOM que tem a funcionalidade de mapear um conjunto reduzido dos dados de treinamento por meio de uma abordagem que utiliza o conceito de geração de protótipo, também denominado de neurônio vencedor e, em uma segunda etapa, com o algoritmo INN que é usado para classificar o novo objeto por meio de uma abordagem que encontra no conjunto de treinamento reduzido pelo SOM os objetos mais informativos. Foram realizados experimentos usando 21 conjuntos de dados públicos, comparando com os algoritmos clássicos da literatura de classificação de dados, a partir dos indicadores de redução do conjunto de treinamento, acurácia, kappa e tempo consumido no processo de classificação. Os resultados obtidos mostram que o algoritmo proposto SOM-INN, quando comparado com outros classificadores da literatura, apresenta acurácia melhor em bases de dados em que a região de fronteira não é bem definida. O principal diferencial do SOM-INN está no tempo de classificação, o que é de suma importância para aplicações reais. 2017-03-22T15:01:23Z 2016-12-14 info:eu-repo/semantics/publishedVersion info:eu-repo/semantics/masterThesis MOREIRA, Leandro Juvêncio. Classificação de dados combinando mapas auto-organizáveis com vizinho informativo mais próximo. 2016. 54 f. Dissertação ( Engenharia Elétrica) - Universidade Presbiteriana Mackenzie, São Paulo . http://tede.mackenzie.br/jspui/handle/tede/3122 por http://creativecommons.org/licenses/by-nc-nd/4.0/ info:eu-repo/semantics/openAccess application/pdf Universidade Presbiteriana Mackenzie Engenharia Elétrica UPM Brasil Escola de Engenharia Mackenzie (EE) reponame:Biblioteca Digital de Teses e Dissertações do Mackenzie instname:Universidade Presbiteriana Mackenzie instacron:MACKENZIE