Hardware-based approach to support mixed-critical workload execution in multicore processors

Submitted by Setor de Tratamento da Informa??o - BC/PUCRS (tede2@pucrs.br) on 2016-05-06T16:26:38Z No. of bitstreams: 1 DIS_BRUNO_NASPOLINI_GREEN_COMPLETO.pdf: 5399784 bytes, checksum: 68454c801dfde629ebad948323993992 (MD5) === Made available in DSpace on 2016-05-06T16:26:38Z (GMT). No. of bitstream...

Full description

Bibliographic Details
Main Author: Green, Bruno Naspolini
Other Authors: Vargas, Fabian Luis
Format: Others
Language:English
Published: Pontif?cia Universidade Cat?lica do Rio Grande do Sul 2016
Subjects:
Online Access:http://tede2.pucrs.br/tede2/handle/tede/6641
id ndltd-IBICT-oai-tede2.pucrs.br-tede-6641
record_format oai_dc
collection NDLTD
language English
format Others
sources NDLTD
topic MULTIPROCESSADORES
PROCESSAMENTO DE ALTO DESEMPENHO
INFORM?TICA
ENGENHARIAS
spellingShingle MULTIPROCESSADORES
PROCESSAMENTO DE ALTO DESEMPENHO
INFORM?TICA
ENGENHARIAS
Green, Bruno Naspolini
Hardware-based approach to support mixed-critical workload execution in multicore processors
description Submitted by Setor de Tratamento da Informa??o - BC/PUCRS (tede2@pucrs.br) on 2016-05-06T16:26:38Z No. of bitstreams: 1 DIS_BRUNO_NASPOLINI_GREEN_COMPLETO.pdf: 5399784 bytes, checksum: 68454c801dfde629ebad948323993992 (MD5) === Made available in DSpace on 2016-05-06T16:26:38Z (GMT). No. of bitstreams: 1 DIS_BRUNO_NASPOLINI_GREEN_COMPLETO.pdf: 5399784 bytes, checksum: 68454c801dfde629ebad948323993992 (MD5) Previous issue date: 2015-12-23 === Coordena??o de Aperfei?oamento de Pessoal de N?vel Superior - CAPES === The use of multicore processors in general-purpose real-time embedded systems has experienced a huge increase in the recent years. Unfortunately, critical applications are not benefiting from this type of processors as one could expect. The major obstacle is that we may not predict and provide any guarantee on real-time properties of software running on such platforms. The shared memory bus is among the most critical resources, which severely degrades the timing predictability of multicore software due to the access contention between cores. To counteract this problem, we present in this work a new approach that supports mixed-criticality workload execution in a multicore processor-based embedded system. It allows any number of cores to run less-critical tasks concurrently with the critical core, which is running the critical task. The approach is based on the use of a dedicated Hard Deadline Enforcer (HDE) implemented in hardware, which allows the execution of any number of cores (running less-critical workloads) concurrently with the critical core (executing the critical workload). From the best of our knowledge, compared to existing techniques, the proposed approach allows the exploitation of the maximum performance offered by a multiprocessing system while guaranteeing critical task schedulability. Additionally, the proposed approach presents the same design complexity as any other approach devoted to perform timing analysis for single core processor, no matter the number of cores are used in the embedded system on the design. If current techniques were used, the design complexity to perform timing analysis would increase dramatically as long as the number of cores in the embedded system increases. A case-study based on a dual-core version of the LEON3 processor was implemented to demonstrate the applicability and assertiveness of the approach. Several critical application codes were compiled to this processor, which was mapped into a Xilinx Spartan 3E FPGA. Experimental results demonstrate that the proposed approach is very effective on combining system high-performance with critical task schedulability within timing deadline. === O uso de processadores multicore em sistemas embarcados em tempo real de prop?sito geral tem experimentado um enorme aumento nos ?ltimos anos. Infelizmente, aplica??es cr?ticas n?o se beneficiam deste tipo de processadores como se poderia esperar. O principal obst?culo ? que n?o podemos prever e fornecer qualquer garantia sobre as propriedades em tempo real do software em execu??o nessas plataformas. O barramento de mem?ria compartilhada est? entre os recursos mais cr?ticos, que degrada severamente a previsibilidade temporal do software multicore devido ? conten??o de acesso entre os n?cleos. Para combater este problema, apresentamos neste trabalho uma nova abordagem que suporta a execu??o de carga de trabalho de criticidade mista em um sistema embarcado baseado em processadores multicore. Permitindo que qualquer n?mero de n?cleos execute tarefas menos cr?ticas concorrentemente com o n?cleo cr?tico que executa a tarefa cr?tica. A abordagem baseia-se na utiliza??o de um Hard Deadline Enforcer (HDE) implementado em hardware, que permite a execu??o de qualquer n?mero de n?cleos (executando cargas de trabalho menos cr?ticas) simultaneamente com o n?cleo cr?tico (executando a carga cr?tica). A partir do melhor de nosso conhecimento, em compara??o com as t?cnicas existentes, a abordagem proposta permite a explora??o do desempenho m?ximo oferecido por um sistema multicore, garantindo a escalonabilidade da tarefa cr?tica. Al?m disso, a abordagem proposta apresenta a mesma complexidade de projeto, como qualquer outra abordagem dedicada a an?lise temporal para processadores de n?cleo ?nico, n?o importando o n?mero de n?cleos que s?o utilizados no sistema incorporado ao design. Caso t?cnicas atuais fossem utilizadas, a complexidade do projeto para an?lise temporal de sistemas de m?ltiplos n?cleos aumentaria dramaticamente conforme o aumento do n?mero de n?cleos do sistema embarcado. Foi implementado um estudo de caso baseado em uma vers?o dual-core do processador LEON3 para demonstrar a aplicabilidade e assertividade da abordagem. V?rios c?digos de aplica??es cr?ticas foram compilados para este processador, que foi mapeado na FPGA Spartan 3E da Xilinx. Resultados experimentais demonstram que a abordagem proposta ? muito eficaz na obten??o da alta performance do sistema respeitando o deadline da tarefa cr?tica.
author2 Vargas, Fabian Luis
author_facet Vargas, Fabian Luis
Green, Bruno Naspolini
author Green, Bruno Naspolini
author_sort Green, Bruno Naspolini
title Hardware-based approach to support mixed-critical workload execution in multicore processors
title_short Hardware-based approach to support mixed-critical workload execution in multicore processors
title_full Hardware-based approach to support mixed-critical workload execution in multicore processors
title_fullStr Hardware-based approach to support mixed-critical workload execution in multicore processors
title_full_unstemmed Hardware-based approach to support mixed-critical workload execution in multicore processors
title_sort hardware-based approach to support mixed-critical workload execution in multicore processors
publisher Pontif?cia Universidade Cat?lica do Rio Grande do Sul
publishDate 2016
url http://tede2.pucrs.br/tede2/handle/tede/6641
work_keys_str_mv AT greenbrunonaspolini hardwarebasedapproachtosupportmixedcriticalworkloadexecutioninmulticoreprocessors
_version_ 1718954902527410176
spelling ndltd-IBICT-oai-tede2.pucrs.br-tede-66412019-01-22T02:43:57Z Hardware-based approach to support mixed-critical workload execution in multicore processors Green, Bruno Naspolini Vargas, Fabian Luis Salton, Aur?lio Tergolina MULTIPROCESSADORES PROCESSAMENTO DE ALTO DESEMPENHO INFORM?TICA ENGENHARIAS Submitted by Setor de Tratamento da Informa??o - BC/PUCRS (tede2@pucrs.br) on 2016-05-06T16:26:38Z No. of bitstreams: 1 DIS_BRUNO_NASPOLINI_GREEN_COMPLETO.pdf: 5399784 bytes, checksum: 68454c801dfde629ebad948323993992 (MD5) Made available in DSpace on 2016-05-06T16:26:38Z (GMT). No. of bitstreams: 1 DIS_BRUNO_NASPOLINI_GREEN_COMPLETO.pdf: 5399784 bytes, checksum: 68454c801dfde629ebad948323993992 (MD5) Previous issue date: 2015-12-23 Coordena??o de Aperfei?oamento de Pessoal de N?vel Superior - CAPES The use of multicore processors in general-purpose real-time embedded systems has experienced a huge increase in the recent years. Unfortunately, critical applications are not benefiting from this type of processors as one could expect. The major obstacle is that we may not predict and provide any guarantee on real-time properties of software running on such platforms. The shared memory bus is among the most critical resources, which severely degrades the timing predictability of multicore software due to the access contention between cores. To counteract this problem, we present in this work a new approach that supports mixed-criticality workload execution in a multicore processor-based embedded system. It allows any number of cores to run less-critical tasks concurrently with the critical core, which is running the critical task. The approach is based on the use of a dedicated Hard Deadline Enforcer (HDE) implemented in hardware, which allows the execution of any number of cores (running less-critical workloads) concurrently with the critical core (executing the critical workload). From the best of our knowledge, compared to existing techniques, the proposed approach allows the exploitation of the maximum performance offered by a multiprocessing system while guaranteeing critical task schedulability. Additionally, the proposed approach presents the same design complexity as any other approach devoted to perform timing analysis for single core processor, no matter the number of cores are used in the embedded system on the design. If current techniques were used, the design complexity to perform timing analysis would increase dramatically as long as the number of cores in the embedded system increases. A case-study based on a dual-core version of the LEON3 processor was implemented to demonstrate the applicability and assertiveness of the approach. Several critical application codes were compiled to this processor, which was mapped into a Xilinx Spartan 3E FPGA. Experimental results demonstrate that the proposed approach is very effective on combining system high-performance with critical task schedulability within timing deadline. O uso de processadores multicore em sistemas embarcados em tempo real de prop?sito geral tem experimentado um enorme aumento nos ?ltimos anos. Infelizmente, aplica??es cr?ticas n?o se beneficiam deste tipo de processadores como se poderia esperar. O principal obst?culo ? que n?o podemos prever e fornecer qualquer garantia sobre as propriedades em tempo real do software em execu??o nessas plataformas. O barramento de mem?ria compartilhada est? entre os recursos mais cr?ticos, que degrada severamente a previsibilidade temporal do software multicore devido ? conten??o de acesso entre os n?cleos. Para combater este problema, apresentamos neste trabalho uma nova abordagem que suporta a execu??o de carga de trabalho de criticidade mista em um sistema embarcado baseado em processadores multicore. Permitindo que qualquer n?mero de n?cleos execute tarefas menos cr?ticas concorrentemente com o n?cleo cr?tico que executa a tarefa cr?tica. A abordagem baseia-se na utiliza??o de um Hard Deadline Enforcer (HDE) implementado em hardware, que permite a execu??o de qualquer n?mero de n?cleos (executando cargas de trabalho menos cr?ticas) simultaneamente com o n?cleo cr?tico (executando a carga cr?tica). A partir do melhor de nosso conhecimento, em compara??o com as t?cnicas existentes, a abordagem proposta permite a explora??o do desempenho m?ximo oferecido por um sistema multicore, garantindo a escalonabilidade da tarefa cr?tica. Al?m disso, a abordagem proposta apresenta a mesma complexidade de projeto, como qualquer outra abordagem dedicada a an?lise temporal para processadores de n?cleo ?nico, n?o importando o n?mero de n?cleos que s?o utilizados no sistema incorporado ao design. Caso t?cnicas atuais fossem utilizadas, a complexidade do projeto para an?lise temporal de sistemas de m?ltiplos n?cleos aumentaria dramaticamente conforme o aumento do n?mero de n?cleos do sistema embarcado. Foi implementado um estudo de caso baseado em uma vers?o dual-core do processador LEON3 para demonstrar a aplicabilidade e assertividade da abordagem. V?rios c?digos de aplica??es cr?ticas foram compilados para este processador, que foi mapeado na FPGA Spartan 3E da Xilinx. Resultados experimentais demonstram que a abordagem proposta ? muito eficaz na obten??o da alta performance do sistema respeitando o deadline da tarefa cr?tica. 2016-05-06T16:26:38Z 2015-12-23 info:eu-repo/semantics/publishedVersion info:eu-repo/semantics/masterThesis http://tede2.pucrs.br/tede2/handle/tede/6641 eng 207662918905964549 600 600 600 600 -655770572761439785 4518971056484826825 2075167498588264571 info:eu-repo/semantics/openAccess application/pdf Pontif?cia Universidade Cat?lica do Rio Grande do Sul Programa de P?s-Gradua??o em Engenharia El?trica PUCRS Brasil Faculdade de Engenharia reponame:Biblioteca Digital de Teses e Dissertações da PUC_RS instname:Pontifícia Universidade Católica do Rio Grande do Sul instacron:PUC_RS