Têmpera e partição de ferros fundidos nodulares: microestrutura e cinética.

Este trabalho está inserido em um projeto que procura estudar a viabilidade técnica da aplicação de um relativamente novo conceito de tratamento térmico, chamado de Têmpera e Partição (T&P), como alternativa para o processamento de ferros fundidos nodulares com alta resistência mecânica. O p...

Full description

Bibliographic Details
Main Author: Arthur Seiji Nishikawa
Other Authors: Helio Goldenstein
Language:Portuguese
Published: Universidade de São Paulo 2018
Subjects:
Online Access:http://www.teses.usp.br/teses/disponiveis/3/3133/tde-05022019-092855/
id ndltd-IBICT-oai-teses.usp.br-tde-05022019-092855
record_format oai_dc
collection NDLTD
language Portuguese
sources NDLTD
topic Ferro fundido
Tratamento térmico
Austenite
Computational model
Ductile cast iron
Heat treatments
Martensite, Bainite
Quenching and partitioning
spellingShingle Ferro fundido
Tratamento térmico
Austenite
Computational model
Ductile cast iron
Heat treatments
Martensite, Bainite
Quenching and partitioning
Arthur Seiji Nishikawa
Têmpera e partição de ferros fundidos nodulares: microestrutura e cinética.
description Este trabalho está inserido em um projeto que procura estudar a viabilidade técnica da aplicação de um relativamente novo conceito de tratamento térmico, chamado de Têmpera e Partição (T&P), como alternativa para o processamento de ferros fundidos nodulares com alta resistência mecânica. O processo T&P tem por objetivo a obtenção de microestruturas multifásicas constituídas de martensita e austenita retida, estabilizada em carbono. A martensita confere elevada resistência mecânica, enquanto a austenita confere ductilidade. No processo T&P, após a austenitização total ou parcial da liga, o material é temperado até uma temperatura de têmpera TT entre as temperaturas Ms e Mf para produzir uma mistura controlada de martensita e austenita. Em seguida, na etapa de partição, o material é mantido isotermicamente em uma temperatura igual ou mais elevada (denominada temperatura de partição TP) para permitir a partição de carbono da martensita para a austenita. O carbono em solução sólida diminui a temperatura Ms da austenita, estabilizando-a à temperatura ambiente. O presente trabalho procurou estudar aspectos de transformações de fases -- com ênfase na evolução microestrutural e cinética das reações -- do tratamento térmico de Têmpera e Partição (T&P) aplicado a uma liga de ferro fundido nodular (Fe-3,47%C-2,47%Si-0,2%Mn). Tratamentos térmicos consistiram de austenitização a 880 oC por 30 min, seguido de têmpera a 140, 170 e 200 oC e partição a 300, 375 e 450 oC por até 2 h. A caracterização microestrutural foi feita por microscopia óptica (MO), eletrônica de varredura (MEV), difração de elétrons retroespalhados (EBSD) e análise de microssonda eletrônica (EPMA). A análise cinética foi feita por meio de ensaios de dilatometria de alta resolução e difração de raios X in situ usando radiação síncrotron. Resultados mostram que a ocorrência de reações competitivas -- reação bainítica e precipitação de carbonetos na martensita -- é inevitável durante a aplicação do tratamento T&P à presente liga de ferro fundido nodular. A cinética da reação bainítica é acelerada pela presença da martensita formada na etapa de têmpera. A reação bainítica acontece, a baixas temperaturas, desacompanhada da precipitação de carbonetos e contribui para o enriquecimento em carbono, e consequente estabilização, da austenita. Devido à precipitação de carbonetos na martensita, a formação de ferrita bainítica é o principal mecanismo de enriquecimento em carbono da austenita. A microssegregação proveniente da etapa de solidificação permanece no material tratado termicamente e afeta a distribuição da martensita formada na etapa de têmpera e a cinética da reação bainítica. Em regiões correspondentes a contornos de célula eutética são observadas menores quantidades de martensita e a reação bainítica é mais lenta. A microestrutura final produzida pelo tratamento T&P aplicado ao ferro fundido consiste de martensita revenida com carbonetos, ferrita banítica e austenita enriquecida estabilizada pelo carbono. Adicionalmente, foi desenvolvido um modelo computacional que calcula a redistribuição local de carbono durante a etapa de partição do tratamento T&P, assumindo os efeitos da precipitação de do crescimento de placas de ferrita bainítica a partir da austenita. O modelo mostrou que a cinética de partição de carbono da martensita para a austenita é mais lenta quando os carbonetos precipitados são mais estáveis e que, quando a energia livre dos carbonetos é suficientemente baixa, o fluxo de carbono acontece da austenita para a martensita. A aplicação do modelo não se limita às condições estudadas neste trabalho e pode ser aplicada para o planejamento de tratamentos T&P para aços. === The present work belongs to a bigger project whose main goal is to study the technical feasibility of the application of a relatively new heat treating concept, called Quenching and Partitioning (Q&P), as an alternative to the processing of high strength ductile cast irons. The aim of the Q&P process is to obtain multiphase microstructures consisting of martensite and carbon enriched retained austenite. Martensite confers high strength, whereas austenite confers ductility. In the Q&P process, after total or partial austenitization of the alloy, the material is quenched in a quenching temperature TQ between the Ms and Mf temperatures to produce a controlled mixture of martensite and austenite. Next, at the partitioning step, the material is isothermally held at a either equal or higher temperature (so called partitioning temperature TP) in order to promote the carbon diffusion (partitioning) from martensite to austenite. The present work focus on the study of phase transformations aspects -- with emphasis on the microstructural evolution and kinetics of the reactions -- of the Q&P process applied to a ductile cast iron alloy (Fe-3,47%C-2,47%Si-0,2%Mn). Heat treatments consisted of austenitization at 880 oC for 30 min, followed by quenching at 140, 170, and 200 oC and partitioning at 300, 375 e 450 oC up to 2 h. The microstructural characterization was carried out by optical microscopy (OM), scanning electron microscopy (SEM), backscattered diffraction (EBSD), and electron probe microanalysis (EPMA). The kinetic analysis was studied by high resolution dilatometry tests and in situ X-ray diffraction using a synchrotron light source. Results showed that competitive reactions -- bainite reaction and carbides precipitation in martensite -- is unavoidable during the Q&P process. The bainite reaction kinetics is accelerated by the presence of martensite formed in the quenching step. The bainite reaction occurs at low temperatures without carbides precipitation and contributes to the carbon enrichment of austenite and its stabilization. Due to carbides precipitation in martensite, growth of bainitic ferrite is the main mechanism of carbon enrichment of austenite. Microsegregation inherited from the casting process is present in the heat treated material and affects the martensite distribution and the kinetics of the bainite reaction. In regions corresponding to eutectic cell boundaries less martensite is observed and the kinetics of bainite reaction is slower. The final microestructure produced by the Q&P process applied to the ductile cast iron consists of tempered martensite with carbides, bainitic ferrite, and carbon enriched austenite. Additionally, a computational model was developed to calculate the local kinetics of carbon redistribution during the partitioning step, considering the effects of carbides precipitation and bainite reaction. The model showed that the kinetics of carbon partitioning from martensite to austenite is slower when the tempering carbides are more stable and that, when the carbides free energy is sufficiently low, the carbon diffuses from austenite to martensite. The model is not limited to the studied conditions and can be applied to the development of Q&P heat treatments to steels.
author2 Helio Goldenstein
author_facet Helio Goldenstein
Arthur Seiji Nishikawa
author Arthur Seiji Nishikawa
author_sort Arthur Seiji Nishikawa
title Têmpera e partição de ferros fundidos nodulares: microestrutura e cinética.
title_short Têmpera e partição de ferros fundidos nodulares: microestrutura e cinética.
title_full Têmpera e partição de ferros fundidos nodulares: microestrutura e cinética.
title_fullStr Têmpera e partição de ferros fundidos nodulares: microestrutura e cinética.
title_full_unstemmed Têmpera e partição de ferros fundidos nodulares: microestrutura e cinética.
title_sort têmpera e partição de ferros fundidos nodulares: microestrutura e cinética.
publisher Universidade de São Paulo
publishDate 2018
url http://www.teses.usp.br/teses/disponiveis/3/3133/tde-05022019-092855/
work_keys_str_mv AT arthurseijinishikawa temperaeparticaodeferrosfundidosnodularesmicroestruturaecinetica
AT arthurseijinishikawa quenchingandpartitioningofductilecastironsmicrostructureandkinetics
_version_ 1718982103875452928
spelling ndltd-IBICT-oai-teses.usp.br-tde-05022019-0928552019-02-24T03:45:40Z Têmpera e partição de ferros fundidos nodulares: microestrutura e cinética. Quenching and partitioning of ductile cast irons: microstructure and kinetics. Arthur Seiji Nishikawa Helio Goldenstein Andre Paulo Tschiptschin Fernando Cosme Rizzo Assunção Antonio Augusto Gorni Wilson Luiz Guesser Dagoberto Brandão Santos Ferro fundido Tratamento térmico Austenite Computational model Ductile cast iron Heat treatments Martensite, Bainite Quenching and partitioning Este trabalho está inserido em um projeto que procura estudar a viabilidade técnica da aplicação de um relativamente novo conceito de tratamento térmico, chamado de Têmpera e Partição (T&P), como alternativa para o processamento de ferros fundidos nodulares com alta resistência mecânica. O processo T&P tem por objetivo a obtenção de microestruturas multifásicas constituídas de martensita e austenita retida, estabilizada em carbono. A martensita confere elevada resistência mecânica, enquanto a austenita confere ductilidade. No processo T&P, após a austenitização total ou parcial da liga, o material é temperado até uma temperatura de têmpera TT entre as temperaturas Ms e Mf para produzir uma mistura controlada de martensita e austenita. Em seguida, na etapa de partição, o material é mantido isotermicamente em uma temperatura igual ou mais elevada (denominada temperatura de partição TP) para permitir a partição de carbono da martensita para a austenita. O carbono em solução sólida diminui a temperatura Ms da austenita, estabilizando-a à temperatura ambiente. O presente trabalho procurou estudar aspectos de transformações de fases -- com ênfase na evolução microestrutural e cinética das reações -- do tratamento térmico de Têmpera e Partição (T&P) aplicado a uma liga de ferro fundido nodular (Fe-3,47%C-2,47%Si-0,2%Mn). Tratamentos térmicos consistiram de austenitização a 880 oC por 30 min, seguido de têmpera a 140, 170 e 200 oC e partição a 300, 375 e 450 oC por até 2 h. A caracterização microestrutural foi feita por microscopia óptica (MO), eletrônica de varredura (MEV), difração de elétrons retroespalhados (EBSD) e análise de microssonda eletrônica (EPMA). A análise cinética foi feita por meio de ensaios de dilatometria de alta resolução e difração de raios X in situ usando radiação síncrotron. Resultados mostram que a ocorrência de reações competitivas -- reação bainítica e precipitação de carbonetos na martensita -- é inevitável durante a aplicação do tratamento T&P à presente liga de ferro fundido nodular. A cinética da reação bainítica é acelerada pela presença da martensita formada na etapa de têmpera. A reação bainítica acontece, a baixas temperaturas, desacompanhada da precipitação de carbonetos e contribui para o enriquecimento em carbono, e consequente estabilização, da austenita. Devido à precipitação de carbonetos na martensita, a formação de ferrita bainítica é o principal mecanismo de enriquecimento em carbono da austenita. A microssegregação proveniente da etapa de solidificação permanece no material tratado termicamente e afeta a distribuição da martensita formada na etapa de têmpera e a cinética da reação bainítica. Em regiões correspondentes a contornos de célula eutética são observadas menores quantidades de martensita e a reação bainítica é mais lenta. A microestrutura final produzida pelo tratamento T&P aplicado ao ferro fundido consiste de martensita revenida com carbonetos, ferrita banítica e austenita enriquecida estabilizada pelo carbono. Adicionalmente, foi desenvolvido um modelo computacional que calcula a redistribuição local de carbono durante a etapa de partição do tratamento T&P, assumindo os efeitos da precipitação de do crescimento de placas de ferrita bainítica a partir da austenita. O modelo mostrou que a cinética de partição de carbono da martensita para a austenita é mais lenta quando os carbonetos precipitados são mais estáveis e que, quando a energia livre dos carbonetos é suficientemente baixa, o fluxo de carbono acontece da austenita para a martensita. A aplicação do modelo não se limita às condições estudadas neste trabalho e pode ser aplicada para o planejamento de tratamentos T&P para aços. The present work belongs to a bigger project whose main goal is to study the technical feasibility of the application of a relatively new heat treating concept, called Quenching and Partitioning (Q&P), as an alternative to the processing of high strength ductile cast irons. The aim of the Q&P process is to obtain multiphase microstructures consisting of martensite and carbon enriched retained austenite. Martensite confers high strength, whereas austenite confers ductility. In the Q&P process, after total or partial austenitization of the alloy, the material is quenched in a quenching temperature TQ between the Ms and Mf temperatures to produce a controlled mixture of martensite and austenite. Next, at the partitioning step, the material is isothermally held at a either equal or higher temperature (so called partitioning temperature TP) in order to promote the carbon diffusion (partitioning) from martensite to austenite. The present work focus on the study of phase transformations aspects -- with emphasis on the microstructural evolution and kinetics of the reactions -- of the Q&P process applied to a ductile cast iron alloy (Fe-3,47%C-2,47%Si-0,2%Mn). Heat treatments consisted of austenitization at 880 oC for 30 min, followed by quenching at 140, 170, and 200 oC and partitioning at 300, 375 e 450 oC up to 2 h. The microstructural characterization was carried out by optical microscopy (OM), scanning electron microscopy (SEM), backscattered diffraction (EBSD), and electron probe microanalysis (EPMA). The kinetic analysis was studied by high resolution dilatometry tests and in situ X-ray diffraction using a synchrotron light source. Results showed that competitive reactions -- bainite reaction and carbides precipitation in martensite -- is unavoidable during the Q&P process. The bainite reaction kinetics is accelerated by the presence of martensite formed in the quenching step. The bainite reaction occurs at low temperatures without carbides precipitation and contributes to the carbon enrichment of austenite and its stabilization. Due to carbides precipitation in martensite, growth of bainitic ferrite is the main mechanism of carbon enrichment of austenite. Microsegregation inherited from the casting process is present in the heat treated material and affects the martensite distribution and the kinetics of the bainite reaction. In regions corresponding to eutectic cell boundaries less martensite is observed and the kinetics of bainite reaction is slower. The final microestructure produced by the Q&P process applied to the ductile cast iron consists of tempered martensite with carbides, bainitic ferrite, and carbon enriched austenite. Additionally, a computational model was developed to calculate the local kinetics of carbon redistribution during the partitioning step, considering the effects of carbides precipitation and bainite reaction. The model showed that the kinetics of carbon partitioning from martensite to austenite is slower when the tempering carbides are more stable and that, when the carbides free energy is sufficiently low, the carbon diffuses from austenite to martensite. The model is not limited to the studied conditions and can be applied to the development of Q&P heat treatments to steels. 2018-10-01 info:eu-repo/semantics/publishedVersion info:eu-repo/semantics/doctoralThesis http://www.teses.usp.br/teses/disponiveis/3/3133/tde-05022019-092855/ por info:eu-repo/semantics/openAccess Universidade de São Paulo Engenharia Metalúrgica USP BR reponame:Biblioteca Digital de Teses e Dissertações da USP instname:Universidade de São Paulo instacron:USP