Summary: | A turbulência clássica é um fenômeno de natureza caótica, mas de difícil estudo por ser constituída pela fusão e superposição de vórtices aleatórios, dificultando sua descrição matemática. A turbulência quântica (TQ), embora também caótica, é composta por vórtices quantizados, que favorecem o controle experimental e sua definição teórica. Embora a evidência experimental da TQ tenha sido obtida em sistemas de He líquido, sua caracterização em condensados de Bose-Einstein (BEC) ainda não foi totalmente realizada. Neste trabalho, estudamos a distribuição de momento em BECs expandidos em tempo de voo, nos regimes convencional e turbulento. Para a produção experimental da amostra quanticamente degenerada, utilizamos a técnica do resfriamento evaporativo em átomos de 87Rb, previamente resfriados em uma armadilha puramente magnética do tipo QUIC. A turbulência quântica foi produzida no sistema através de um par de bobinas de excitação capaz de produzir uma perturbação oscilatória na nuvem previamente condensada. O diagnóstico da amostra aprisionada é feito por imagem de absorção durante expansão livre da nuvem. Durante a expansão, tanto a nuvem condensada quanto a turbulenta, alcançaram um valor assintótico no aspect ratio, indicando uma evolução isotrópica. A partir deste resultado, elaboramos um método teórico capaz de determinar a projeção isotrópica da distribuição de momento, baseado na imagem produzida experimentalmente. Através de argumentos de simetria e de uma transformada integral, recuperamos a densidade de momento tridimensional da projeção, para então determinar o espectro de energia cinética da nuvem, observando uma lei de escala para um estreito intervalo de momento. A lei de escala já foi prevista teoricamente para sistemas quânticos e medida para o He superfluido, mas pela primeira vez foi evidenciada em um BEC. Desta forma, os resultados corroboram a existência da turbulência quântica em uma amostra quanticamente degenerada, introduzindo os BECs como candidatos alternativos ao He líquido superfluido no estudo deste fenômeno.
===
Classical turbulence is a chaotic phenomenon that requires labored work, because of its merging and overlapping of random vortices nature, which hinders its mathematical description. Quantum turbulence (QT), although chaotic, is comprised of quantized vortices that favor the experimental control and its theoretical definition. Although experimental evidence of QT has been proved in liquid helium systems, its characterization in Bose-Einstein condensates (BEC) has not been fully accomplished. In this work, we studied the momentum distribution of expanding turbulent and non-turbulent BEC. For experimental achievement of the quantum degenerated sample, we used evaporative cooling in rubidium atoms, previously cooled in a QUIC trap. Quantum turbulence was produced through a pair of excitation coils capable of producing an oscillatory perturbation in the cloud previously condensed. The diagnosis of the trapped sample is done by absorption image during free expansion of the cloud. During the expansion, both clouds achieved a asymptotic value of the aspect ratio, indicating an isotropic evolution. From this result, we have developed a theoretical method able to determine the projection of the isotropic distribution of momentum, based on the image produced experimentally. Through symmetry arguments and an integral transformation, we recovered the tridimensional momentum distribution of the projection and then determined the kinetic energy spectrum of the cloud, observing a scaling power law for a narrow range of momenta. The scaling law has been theoretically predicted for quantum systems and has been proved to liquid helium superfluid, but, in this work, was for the first time evidenced in a BEC. Thus, the results support the existence of quantum turbulence in our quantum degenerated sample, introducing the BECs as potential candidates besides liquid helium superfluid for the study of this phenomenon.
|