Ideais maximais cíclicos à esquerda da álgebra de Weyl A2(K)

Neste trabalho, dado um corpo K de característica zero, discutimos a existência de ideais maximais da Álgebra de Weyl An(K) gerados por operadores de ordem 1. Para a Álgebra de Weyl A1(K), apresentamos exemplos de ideais maximais cíclicos; para n maior ou igual a 2, entre especiais operadores de ord...

Full description

Bibliographic Details
Main Author: Ferreira, Jose Luiz de Oliveira
Other Authors: Ripoll, Cydara Cavedon
Format: Others
Language:Portuguese
Published: 2015
Subjects:
Online Access:http://hdl.handle.net/10183/117815
Description
Summary:Neste trabalho, dado um corpo K de característica zero, discutimos a existência de ideais maximais da Álgebra de Weyl An(K) gerados por operadores de ordem 1. Para a Álgebra de Weyl A1(K), apresentamos exemplos de ideais maximais cíclicos; para n maior ou igual a 2, entre especiais operadores de ordem um, nós caracterizamos aqueles que geram ideais maximais. Finalmente, para n = 2, mostramos que, para toda derivação simples da forma d = al + {382, com {3 E K[X1, X2], existe é E {1, -1} tal que A2 · (d + éX2) é um ideal maximal de A2(K) e que este resultado é ótimo, no sentido de que a condição "é E {1, -1}" não pode ser substituída por "é sempre igual a 1" ou por "é sempre igual a -1". === In this work, given a field K of characteristic zero, we present examples of cyclic maximalleft ideais of the vVeyl algebra A1(K) generated by operators of order one; for n maior ou igual a 2, among special operators of order one, we characterize the ones which generate maximalleft ideais. Finally, for n = 2, we show that for every simple derivation of the form d = 81 + {382 with {3 E K (Xll X2] there exists é E {1, - 1} such that A2 · (d + éX2) is a left maximal ideal of A2(K), and that this condition is optimal in the sense that "é= 1" doesn 't work always and "é = -1" doesn 't work always.