Summary: | LEITÃO, Maria Robevânia. Tesselações no ensino de geometria euclidiana. 2015. 59 f. Dissertação (Mestrado em Matemática em Rede Nacional) – Centro de Ciências, Universidade Federal do Ceará, Fortaleza, 2015. === Submitted by Rocilda Sales (rocilda@ufc.br) on 2016-01-12T16:14:49Z
No. of bitstreams: 1
2015_dis_mrleitâo.pdf: 11466558 bytes, checksum: 9103dfecd0da6e1e32b93c186e44b182 (MD5) === Approved for entry into archive by Rocilda Sales(rocilda@ufc.br) on 2016-01-12T16:18:45Z (GMT) No. of bitstreams: 1
2015_dis_mrleitâo.pdf: 11466558 bytes, checksum: 9103dfecd0da6e1e32b93c186e44b182 (MD5) === Made available in DSpace on 2016-01-12T16:18:45Z (GMT). No. of bitstreams: 1
2015_dis_mrleitâo.pdf: 11466558 bytes, checksum: 9103dfecd0da6e1e32b93c186e44b182 (MD5)
Previous issue date: 2015 === A Tessellation the Euclidean plane is a cover of it for figures that fit perfectly with no overlaps or gaps between them, so that the partitioned area is equal to the total size. This paper presents suggestions of flat Euclidean geometry content approach through these tessellations as a more atractive strategy that aims to show how you can make teaching more attractive Euclidean Geometry, motivated by interest in solving problems tessellations. Initially we will make a brief study of basics of flat Euclidean geometry, definition, elements and types of tessellations. Next it is suggested a sequence of three activities that address, in an interdisciplinary way and contextualized flat Euclidean geometry abstract content for elementary and secondary education.The first activity is one of the regular polygons approach through tessellations of the Euclidean plane using only one type of polygon. The activity 2 deals with the study of the possibilities of tessellations of the Euclidean plane using two or more regular polygons. Activity 3 addresses the isometries through the works of Escher, with analysis of some works of this artist and construction of tessellations in Escher style. It is discussed some applications of tessellations in mathematics itself, in nature, in the information theory and the arts.The exploration of abstract geometric concepts using concrete materials in a contextualized, interdisciplinary approach allows students to develop skills necessary skills to its construction as a citizen conscious and active in the environment they live in. It is hoped that this work will significantly contribute to improving quality of mathematics teaching. === Tesselar o plano euclidiano significa cobri-lo com figuras que se encaixem perfeitamente não havendo sobreposições, nem espaços vazios entre elas, de modo que a superfície particionada seja igual ao tamanho total. Esse trabalho apresenta sugestões de abordagem de conteúdos de geometria euclidiana plana através dessas tesselações como uma estratégia de ensino que objetiva mostrar como é possível tornar o ensino da geometria euclidiana mais atraente, motivado pelo interesse em resolver problemas de tesselações. Inicialmente faremos um breve estudo sobre conceitos básicos de geometria euclidiana plana, definição, elementos e tipos de tesselações. Em seguida são sugeridas uma sequência de três atividades que abordam, de maneira interdisciplinar e contextualizada conteúdos abstratos de geometria euclidiana plana para o ensino fundamental e médio. A atividade 1 trata da abordagem de polígonos regulares por meio de tesselações do plano euclidiano utilizando um só tipo de polígono. A atividade 2 aborda o estudo das possibilidades de tesselação do plano euclidiano utilizando dois ou mais polígonos regulares. A atividade 3 aborda as isometrias através das obras de Escher, com análise de algumas obras desse artista e construção de tesselações no estilo Escher. Discute-se algumas aplicações das tesselações dentro da própria matemática, na natureza e nas artes. A exploração de conceitos geométricos abstratos utilizando materiais concretos num enfoque contextualizado e interdisciplinar possibilita ao aluno desenvolver habilidades competências necessárias para sua construção enquanto cidadão consciente e ativo no meio em que vive. Espera-se que este trabalho contribua significativamente para a melhoria de qualidade do ensino de Matemática.
|