Tensor techniques in signal processing: algorithms for the canonical polyadic decomposition (PARAFAC)

SILVA, A. P. Tensor techniques in signal processing: algorithms for the canonical polyadic decomposition (PARAFAC). 2016. 124 f. Tese (Doutorado em Engenharia de Teleinformática) - Centro de Tecnologia, Universidade Federal do Ceará, Fortaleza, 2016. === Submitted by Marlene Sousa (mmarlene@ufc.br)...

Full description

Bibliographic Details
Main Author: Silva, Alex Pereira da
Other Authors: Mota, João César Moura
Language:English
Published: 2016
Subjects:
Online Access:http://www.repositorio.ufc.br/handle/riufc/19361
id ndltd-IBICT-oai-www.repositorio.ufc.br-riufc-19361
record_format oai_dc
spelling ndltd-IBICT-oai-www.repositorio.ufc.br-riufc-193612019-01-21T17:13:44Z Tensor techniques in signal processing: algorithms for the canonical polyadic decomposition (PARAFAC) Silva, Alex Pereira da Mota, João César Moura Almeida, André Lima Férrer de Teleinformática Tensor (Cálculo) Deflação SILVA, A. P. Tensor techniques in signal processing: algorithms for the canonical polyadic decomposition (PARAFAC). 2016. 124 f. Tese (Doutorado em Engenharia de Teleinformática) - Centro de Tecnologia, Universidade Federal do Ceará, Fortaleza, 2016. Submitted by Marlene Sousa (mmarlene@ufc.br) on 2016-09-01T18:41:38Z No. of bitstreams: 1 2016_tese_apsilva.pdf: 1648271 bytes, checksum: be3747d533837939c3a410d2f017ddfa (MD5) Approved for entry into archive by Marlene Sousa (mmarlene@ufc.br) on 2016-09-01T18:42:06Z (GMT) No. of bitstreams: 1 2016_tese_apsilva.pdf: 1648271 bytes, checksum: be3747d533837939c3a410d2f017ddfa (MD5) Made available in DSpace on 2016-09-01T18:42:06Z (GMT). No. of bitstreams: 1 2016_tese_apsilva.pdf: 1648271 bytes, checksum: be3747d533837939c3a410d2f017ddfa (MD5) Previous issue date: 2016-06-29 Low rank tensor decomposition has been playing for the last years an important role in many applications such as blind source separation, telecommunications, sensor array processing, neuroscience, chemometrics, and data mining. The Canonical Polyadic tensor decomposition is very attractive when compared to standard matrix-based tools, manly on system identification. In this thesis, we propose: (i) several algorithms to compute specific low rank-approximations: finite/iterative rank-1 approximations, iterative deflation approximations, and orthogonal tensor decompositions. (ii) A new strategy to solve multivariate quadratic systems, where this problem is reduced to a best rank-1 tensor approximation problem. (iii) Theoretical results to study and proof the performance or the convergence of some algorithms. All performances are supported by numerical experiments 2016-09-01T18:42:06Z 2016-09-01T18:42:06Z 2016-06-29 info:eu-repo/semantics/publishedVersion info:eu-repo/semantics/doctoralThesis SILVA, A. P. (2016) http://www.repositorio.ufc.br/handle/riufc/19361 eng info:eu-repo/semantics/openAccess reponame:Repositório Institucional da UFC instname:Universidade Federal do Ceará instacron:UFC
collection NDLTD
language English
sources NDLTD
topic Teleinformática
Tensor (Cálculo)
Deflação
spellingShingle Teleinformática
Tensor (Cálculo)
Deflação
Silva, Alex Pereira da
Tensor techniques in signal processing: algorithms for the canonical polyadic decomposition (PARAFAC)
description SILVA, A. P. Tensor techniques in signal processing: algorithms for the canonical polyadic decomposition (PARAFAC). 2016. 124 f. Tese (Doutorado em Engenharia de Teleinformática) - Centro de Tecnologia, Universidade Federal do Ceará, Fortaleza, 2016. === Submitted by Marlene Sousa (mmarlene@ufc.br) on 2016-09-01T18:41:38Z No. of bitstreams: 1 2016_tese_apsilva.pdf: 1648271 bytes, checksum: be3747d533837939c3a410d2f017ddfa (MD5) === Approved for entry into archive by Marlene Sousa (mmarlene@ufc.br) on 2016-09-01T18:42:06Z (GMT) No. of bitstreams: 1 2016_tese_apsilva.pdf: 1648271 bytes, checksum: be3747d533837939c3a410d2f017ddfa (MD5) === Made available in DSpace on 2016-09-01T18:42:06Z (GMT). No. of bitstreams: 1 2016_tese_apsilva.pdf: 1648271 bytes, checksum: be3747d533837939c3a410d2f017ddfa (MD5) Previous issue date: 2016-06-29 === Low rank tensor decomposition has been playing for the last years an important role in many applications such as blind source separation, telecommunications, sensor array processing, neuroscience, chemometrics, and data mining. The Canonical Polyadic tensor decomposition is very attractive when compared to standard matrix-based tools, manly on system identification. In this thesis, we propose: (i) several algorithms to compute specific low rank-approximations: finite/iterative rank-1 approximations, iterative deflation approximations, and orthogonal tensor decompositions. (ii) A new strategy to solve multivariate quadratic systems, where this problem is reduced to a best rank-1 tensor approximation problem. (iii) Theoretical results to study and proof the performance or the convergence of some algorithms. All performances are supported by numerical experiments
author2 Mota, João César Moura
author_facet Mota, João César Moura
Silva, Alex Pereira da
author Silva, Alex Pereira da
author_sort Silva, Alex Pereira da
title Tensor techniques in signal processing: algorithms for the canonical polyadic decomposition (PARAFAC)
title_short Tensor techniques in signal processing: algorithms for the canonical polyadic decomposition (PARAFAC)
title_full Tensor techniques in signal processing: algorithms for the canonical polyadic decomposition (PARAFAC)
title_fullStr Tensor techniques in signal processing: algorithms for the canonical polyadic decomposition (PARAFAC)
title_full_unstemmed Tensor techniques in signal processing: algorithms for the canonical polyadic decomposition (PARAFAC)
title_sort tensor techniques in signal processing: algorithms for the canonical polyadic decomposition (parafac)
publishDate 2016
url http://www.repositorio.ufc.br/handle/riufc/19361
work_keys_str_mv AT silvaalexpereirada tensortechniquesinsignalprocessingalgorithmsforthecanonicalpolyadicdecompositionparafac
_version_ 1718835118668251136