The Green's Function, the Bergman Kernel and Quadrature Domains in Cn

In the first part of this thesis, we prove two density theorems for quadrature domains in Cn ,n≥2. It is shown that quadrature domains are dense in the class of all product domains of the form D×Ωwhere D⊂Cn−1 is a smoothly bounded pseudoconvex domain satisfying Bell’s Condition R and Ω⊂Cis a smoothly...

Full description

Bibliographic Details
Main Author: Haridas, Pranav
Other Authors: Verma, Kaushal
Language:en_US
Published: 2018
Subjects:
Online Access:http://etd.iisc.ernet.in/2005/3670
http://etd.iisc.ernet.in/abstracts/4540/G27320-Abs.pdf
id ndltd-IISc-oai-etd.iisc.ernet.in-2005-3670
record_format oai_dc
spelling ndltd-IISc-oai-etd.iisc.ernet.in-2005-36702018-06-09T03:43:27ZThe Green's Function, the Bergman Kernel and Quadrature Domains in CnHaridas, PranavBargman SpanGreen’s FunctionQuadrature DomainsBergman KernelSolyninSebbarMathematicsIn the first part of this thesis, we prove two density theorems for quadrature domains in Cn ,n≥2. It is shown that quadrature domains are dense in the class of all product domains of the form D×Ωwhere D⊂Cn−1 is a smoothly bounded pseudoconvex domain satisfying Bell’s Condition R and Ω⊂Cis a smoothly bounded domain. It is also shown that quadrature domains are dense in the class of all smoothly bounded complete Hartogs domains in C2. In the second part of this thesis, we study the behaviour of the critical points of the Green’s function when a sequence of domains Dk⊂Rn con-verges to a limiting domain Din the C∞-topology. It is shown that the limit-ing set of the critical points of the Green’s functions Gkfor domains Dk⊂Care the zeroes of the Bergman kernel of D. This generalizes a result of Solynin and Gustafsson, Sebbar.Verma, Kaushal2018-06-08T07:10:05Z2018-06-08T07:10:05Z2018-06-082015Thesishttp://etd.iisc.ernet.in/2005/3670http://etd.iisc.ernet.in/abstracts/4540/G27320-Abs.pdfen_USG27320
collection NDLTD
language en_US
sources NDLTD
topic Bargman Span
Green’s Function
Quadrature Domains
Bergman Kernel
Solynin
Sebbar
Mathematics
spellingShingle Bargman Span
Green’s Function
Quadrature Domains
Bergman Kernel
Solynin
Sebbar
Mathematics
Haridas, Pranav
The Green's Function, the Bergman Kernel and Quadrature Domains in Cn
description In the first part of this thesis, we prove two density theorems for quadrature domains in Cn ,n≥2. It is shown that quadrature domains are dense in the class of all product domains of the form D×Ωwhere D⊂Cn−1 is a smoothly bounded pseudoconvex domain satisfying Bell’s Condition R and Ω⊂Cis a smoothly bounded domain. It is also shown that quadrature domains are dense in the class of all smoothly bounded complete Hartogs domains in C2. In the second part of this thesis, we study the behaviour of the critical points of the Green’s function when a sequence of domains Dk⊂Rn con-verges to a limiting domain Din the C∞-topology. It is shown that the limit-ing set of the critical points of the Green’s functions Gkfor domains Dk⊂Care the zeroes of the Bergman kernel of D. This generalizes a result of Solynin and Gustafsson, Sebbar.
author2 Verma, Kaushal
author_facet Verma, Kaushal
Haridas, Pranav
author Haridas, Pranav
author_sort Haridas, Pranav
title The Green's Function, the Bergman Kernel and Quadrature Domains in Cn
title_short The Green's Function, the Bergman Kernel and Quadrature Domains in Cn
title_full The Green's Function, the Bergman Kernel and Quadrature Domains in Cn
title_fullStr The Green's Function, the Bergman Kernel and Quadrature Domains in Cn
title_full_unstemmed The Green's Function, the Bergman Kernel and Quadrature Domains in Cn
title_sort green's function, the bergman kernel and quadrature domains in cn
publishDate 2018
url http://etd.iisc.ernet.in/2005/3670
http://etd.iisc.ernet.in/abstracts/4540/G27320-Abs.pdf
work_keys_str_mv AT haridaspranav thegreensfunctionthebergmankernelandquadraturedomainsincn
AT haridaspranav greensfunctionthebergmankernelandquadraturedomainsincn
_version_ 1718693059851452416