Stable Isotopic Composition of Rice Grain Organic Matter as an Archive of Monsoonal Climate

Rice grows in saturated soil water condition and its requirement for water is highest amongst other cereal crops. In India, the southwest monsoon wind regime brings rainfall that provides a favourable environment for rice cultivation. Thus, there is significant dependency ofrice production on the so...

Full description

Bibliographic Details
Main Author: Kaushal, Ritika
Other Authors: Ghosh, Prosenjit
Language:en_US
Published: 2018
Subjects:
Online Access:http://etd.iisc.ernet.in/2005/3995
http://etd.iisc.ernet.in/abstracts/4889/G28571-Abs.pdf
id ndltd-IISc-oai-etd.iisc.ernet.in-2005-3995
record_format oai_dc
spelling ndltd-IISc-oai-etd.iisc.ernet.in-2005-39952018-08-31T03:54:59ZStable Isotopic Composition of Rice Grain Organic Matter as an Archive of Monsoonal ClimateKaushal, RitikaRice Grain - Stable Isotopic CompositionOryza sativa - Stable Isotopic CompositionPalaeoclimate RecordsPlants - IsotppesCarbon Isotope-ratio AnalysisOxygen Isotope-ratio AnalysisHydrogen isotope-ratio AnalysisRice - Palaeo-hydroclimateCentre for Earth SciencesRice grows in saturated soil water condition and its requirement for water is highest amongst other cereal crops. In India, the southwest monsoon wind regime brings rainfall that provides a favourable environment for rice cultivation. Thus, there is significant dependency ofrice production on the southwest monsoon rainfall. Being a crop that grows across diverse climatic regions in India ranging from the humid to semi-arid, it offers possibility to explore therelationship between stable isotopic compositions in the grain organic matter with the climaticfactors relevant for its growth. In this thesis, we measured the isotopic compositions of oxygen, hydrogen and carbon of several rice genotypes that were cultivated during the southwest monsoon in diverse climatic regions across the Indian landmass. These isotopic values were then compared with the seasonalaverage values of climate factors such as relative humidity and temperature. Together with thiswe also studied the dependency of the oxygen isotope composition of the grain OM (δ18OOM) onthat of the source water (δ18OSW). Upon removal of δ18OSW effect from δ18OOM, we obtained astrong and significant relationship between the 18O enrichment in grain organic matter (definedas 18OOM) with relative humidity. The gradient recorded was 0.45‰ shift in 18OOM with 1%change in the relative humidity level. This relationship can potentially be used to estimate thepast variations in relative humidity (and by extension, can provide a measure of monsoon rainfallvariations). We further validated this relationship based on experiments carried out in aglasshouse where all the physical factors were well-monitored. Together with this, carbonisotopic composition measured in the rice grain organic matter were used to infer the water useefficiency of rice grown in different climatic settings. The stable isotope approach was furtherimplemented for studying the archaeological rice grains recovered from archaeological sites. Analysis of carbon isotopic composition of archaeological rice grains from seven archaeologicalsites (Balu, Kanmer, Ojiyana, Lahuradewa, JognaKhera, Hulas and Kunal), belonging to theHarappan civilization and other contemporary cultures provided a new suit of data on quantitativeestimate of the hydroclimatic condition (specifically relative humidity) and water availabilityduring the existence of this civilization.Ghosh, Prosenjit2018-08-30T10:18:35Z2018-08-30T10:18:35Z2018-08-302015Thesishttp://etd.iisc.ernet.in/2005/3995http://etd.iisc.ernet.in/abstracts/4889/G28571-Abs.pdfen_USG28571
collection NDLTD
language en_US
sources NDLTD
topic Rice Grain - Stable Isotopic Composition
Oryza sativa - Stable Isotopic Composition
Palaeoclimate Records
Plants - Isotppes
Carbon Isotope-ratio Analysis
Oxygen Isotope-ratio Analysis
Hydrogen isotope-ratio Analysis
Rice - Palaeo-hydroclimate
Centre for Earth Sciences
spellingShingle Rice Grain - Stable Isotopic Composition
Oryza sativa - Stable Isotopic Composition
Palaeoclimate Records
Plants - Isotppes
Carbon Isotope-ratio Analysis
Oxygen Isotope-ratio Analysis
Hydrogen isotope-ratio Analysis
Rice - Palaeo-hydroclimate
Centre for Earth Sciences
Kaushal, Ritika
Stable Isotopic Composition of Rice Grain Organic Matter as an Archive of Monsoonal Climate
description Rice grows in saturated soil water condition and its requirement for water is highest amongst other cereal crops. In India, the southwest monsoon wind regime brings rainfall that provides a favourable environment for rice cultivation. Thus, there is significant dependency ofrice production on the southwest monsoon rainfall. Being a crop that grows across diverse climatic regions in India ranging from the humid to semi-arid, it offers possibility to explore therelationship between stable isotopic compositions in the grain organic matter with the climaticfactors relevant for its growth. In this thesis, we measured the isotopic compositions of oxygen, hydrogen and carbon of several rice genotypes that were cultivated during the southwest monsoon in diverse climatic regions across the Indian landmass. These isotopic values were then compared with the seasonalaverage values of climate factors such as relative humidity and temperature. Together with thiswe also studied the dependency of the oxygen isotope composition of the grain OM (δ18OOM) onthat of the source water (δ18OSW). Upon removal of δ18OSW effect from δ18OOM, we obtained astrong and significant relationship between the 18O enrichment in grain organic matter (definedas 18OOM) with relative humidity. The gradient recorded was 0.45‰ shift in 18OOM with 1%change in the relative humidity level. This relationship can potentially be used to estimate thepast variations in relative humidity (and by extension, can provide a measure of monsoon rainfallvariations). We further validated this relationship based on experiments carried out in aglasshouse where all the physical factors were well-monitored. Together with this, carbonisotopic composition measured in the rice grain organic matter were used to infer the water useefficiency of rice grown in different climatic settings. The stable isotope approach was furtherimplemented for studying the archaeological rice grains recovered from archaeological sites. Analysis of carbon isotopic composition of archaeological rice grains from seven archaeologicalsites (Balu, Kanmer, Ojiyana, Lahuradewa, JognaKhera, Hulas and Kunal), belonging to theHarappan civilization and other contemporary cultures provided a new suit of data on quantitativeestimate of the hydroclimatic condition (specifically relative humidity) and water availabilityduring the existence of this civilization.
author2 Ghosh, Prosenjit
author_facet Ghosh, Prosenjit
Kaushal, Ritika
author Kaushal, Ritika
author_sort Kaushal, Ritika
title Stable Isotopic Composition of Rice Grain Organic Matter as an Archive of Monsoonal Climate
title_short Stable Isotopic Composition of Rice Grain Organic Matter as an Archive of Monsoonal Climate
title_full Stable Isotopic Composition of Rice Grain Organic Matter as an Archive of Monsoonal Climate
title_fullStr Stable Isotopic Composition of Rice Grain Organic Matter as an Archive of Monsoonal Climate
title_full_unstemmed Stable Isotopic Composition of Rice Grain Organic Matter as an Archive of Monsoonal Climate
title_sort stable isotopic composition of rice grain organic matter as an archive of monsoonal climate
publishDate 2018
url http://etd.iisc.ernet.in/2005/3995
http://etd.iisc.ernet.in/abstracts/4889/G28571-Abs.pdf
work_keys_str_mv AT kaushalritika stableisotopiccompositionofricegrainorganicmatterasanarchiveofmonsoonalclimate
_version_ 1718727597814185984