Design, Development and Characterization of Variable Reluctance Ferrofluid Pump

Ferrofluids are stable colloidal homogeneous mixtures of nano-size single-domain ferromag¬netic particles covered by surfactant layer, and suspended in a carrier fluid compatible with the surfactant. Physical properties of ferrofluid allows one to control it externally using magnetic field without being...

Full description

Bibliographic Details
Main Author: Hegde, Bharathkumar
Other Authors: Dinesh, N S
Language:en_US
Published: 2017
Subjects:
Online Access:http://etd.iisc.ernet.in/handle/2005/2793
http://etd.ncsi.iisc.ernet.in/abstracts/3348/Hegde-BK-Abs.pdf
id ndltd-IISc-oai-etd.ncsi.iisc.ernet.in-2005-2793
record_format oai_dc
spelling ndltd-IISc-oai-etd.ncsi.iisc.ernet.in-2005-27932018-01-10T03:36:49ZDesign, Development and Characterization of Variable Reluctance Ferrofluid PumpHegde, BharathkumarFerrofluidVariable ReluctanceMagnetic FluidFerrofluid PumpVariable Reluctance Ferrofluid PumpVRFPElectronic EngineeringFerrofluids are stable colloidal homogeneous mixtures of nano-size single-domain ferromag¬netic particles covered by surfactant layer, and suspended in a carrier fluid compatible with the surfactant. Physical properties of ferrofluid allows one to control it externally using magnetic field without being in direct contact with it. The thesis presents a novel mechanism to pump ferrofluid based on the principle of variable reluctance, in an external magnetic field. The static and dynamic pressure behavior of ferrofluid in a switched DC magnetic field gives an insight into the variable reluctance behavior of ferrofluid. A ferrofluid pump based on the prin¬ciple of variable reluctance of ferrofluid subjected to an external magnetic field, is developed and hence the pump is named as Variable Reluctance Ferrofluid Pump (VRFP). Three configurations of VRFP are developed: • Single stage one-phase VRFP • Single stage two phase VRFP • Multi-stage VRFP A one-phase VRFP consisting of a check valve along with an electromagnet is designed. The valve is modeled and its transfer function is estimated using System Identification method. This model is then used in the simulation model of the pump. The pump is modeled based on the hydraulic-electric analogies. An electric circuit which represents the gross level equivalent of the pump is simulated and the results are compared with that of the experimental measurements. A two phase VRFP is implemented with two electromagnets on either side of the valve around the tube. Two types of magnetic actuation methods are introduced based on the switching sequences of the two electromagnets, namely Full Step Sequencing and Half Step Sequencing. Simulations and experiments were conducted for different pumping conditions. The one phase and two phase VRFPs are single stage structures. A multi-stage VRFP concept, in which the ferrofluid flow channel (tube) is looped through the electromagnets multiple times, is introduced. For the implementation purpose, a two-stage VRFP is discussed in this thesis. Simulations and experiments resulted in significant improvement in case of two-stage VRFP in the pump performance compared to that of single-stage VRFPs. The work presents a simple and novel design of a ferrofluid pump, which is capable of higher flow rates and pumping against higher back pressure compared to the ferrofluid pumps reported in literature. Keywords: Ferrofluid Pump, VRFP, Variable Reluctance, Multi Stage, Magnetic Fluid,Dinesh, N S2017-11-24T05:49:29Z2017-11-24T05:49:29Z2017-11-242016Thesishttp://etd.iisc.ernet.in/handle/2005/2793http://etd.ncsi.iisc.ernet.in/abstracts/3348/Hegde-BK-Abs.pdfen_US
collection NDLTD
language en_US
sources NDLTD
topic Ferrofluid
Variable Reluctance
Magnetic Fluid
Ferrofluid Pump
Variable Reluctance Ferrofluid Pump
VRFP
Electronic Engineering
spellingShingle Ferrofluid
Variable Reluctance
Magnetic Fluid
Ferrofluid Pump
Variable Reluctance Ferrofluid Pump
VRFP
Electronic Engineering
Hegde, Bharathkumar
Design, Development and Characterization of Variable Reluctance Ferrofluid Pump
description Ferrofluids are stable colloidal homogeneous mixtures of nano-size single-domain ferromag¬netic particles covered by surfactant layer, and suspended in a carrier fluid compatible with the surfactant. Physical properties of ferrofluid allows one to control it externally using magnetic field without being in direct contact with it. The thesis presents a novel mechanism to pump ferrofluid based on the principle of variable reluctance, in an external magnetic field. The static and dynamic pressure behavior of ferrofluid in a switched DC magnetic field gives an insight into the variable reluctance behavior of ferrofluid. A ferrofluid pump based on the prin¬ciple of variable reluctance of ferrofluid subjected to an external magnetic field, is developed and hence the pump is named as Variable Reluctance Ferrofluid Pump (VRFP). Three configurations of VRFP are developed: • Single stage one-phase VRFP • Single stage two phase VRFP • Multi-stage VRFP A one-phase VRFP consisting of a check valve along with an electromagnet is designed. The valve is modeled and its transfer function is estimated using System Identification method. This model is then used in the simulation model of the pump. The pump is modeled based on the hydraulic-electric analogies. An electric circuit which represents the gross level equivalent of the pump is simulated and the results are compared with that of the experimental measurements. A two phase VRFP is implemented with two electromagnets on either side of the valve around the tube. Two types of magnetic actuation methods are introduced based on the switching sequences of the two electromagnets, namely Full Step Sequencing and Half Step Sequencing. Simulations and experiments were conducted for different pumping conditions. The one phase and two phase VRFPs are single stage structures. A multi-stage VRFP concept, in which the ferrofluid flow channel (tube) is looped through the electromagnets multiple times, is introduced. For the implementation purpose, a two-stage VRFP is discussed in this thesis. Simulations and experiments resulted in significant improvement in case of two-stage VRFP in the pump performance compared to that of single-stage VRFPs. The work presents a simple and novel design of a ferrofluid pump, which is capable of higher flow rates and pumping against higher back pressure compared to the ferrofluid pumps reported in literature. Keywords: Ferrofluid Pump, VRFP, Variable Reluctance, Multi Stage, Magnetic Fluid,
author2 Dinesh, N S
author_facet Dinesh, N S
Hegde, Bharathkumar
author Hegde, Bharathkumar
author_sort Hegde, Bharathkumar
title Design, Development and Characterization of Variable Reluctance Ferrofluid Pump
title_short Design, Development and Characterization of Variable Reluctance Ferrofluid Pump
title_full Design, Development and Characterization of Variable Reluctance Ferrofluid Pump
title_fullStr Design, Development and Characterization of Variable Reluctance Ferrofluid Pump
title_full_unstemmed Design, Development and Characterization of Variable Reluctance Ferrofluid Pump
title_sort design, development and characterization of variable reluctance ferrofluid pump
publishDate 2017
url http://etd.iisc.ernet.in/handle/2005/2793
http://etd.ncsi.iisc.ernet.in/abstracts/3348/Hegde-BK-Abs.pdf
work_keys_str_mv AT hegdebharathkumar designdevelopmentandcharacterizationofvariablereluctanceferrofluidpump
_version_ 1718603817247834112