Autoasociatyvinių neuroninių tinklų taikymas vertybinių popierių kainų prognozei
Darbe tiriamas autoasociatyvinių neuroninių tinklų (AANN) bei prinicipinių komponenčių (PCA) taikymas vertybinių popieriui klasterizavimui. Supažindinama su šių metodų veikimo principais, išryškinami AANN privalumai prieš PCA, apžvelgiamas dabartinis šių metodų panaudojimas akcijų klasterizavimui, k...
Main Author: | |
---|---|
Other Authors: | |
Format: | Dissertation |
Language: | Lithuanian |
Published: |
Lithuanian Academic Libraries Network (LABT)
2014
|
Subjects: | |
Online Access: | http://vddb.library.lt/fedora/get/LT-eLABa-0001:E.02~2008~D_20140623_182918-10081/DS.005.0.01.ETD |
id |
ndltd-LABT_ETD-oai-elaba.lt-LT-eLABa-0001-E.02~2008~D_20140623_182918-10081 |
---|---|
record_format |
oai_dc |
spelling |
ndltd-LABT_ETD-oai-elaba.lt-LT-eLABa-0001-E.02~2008~D_20140623_182918-100812014-07-15T03:49:57Z2014-06-23litSkirgaila, AurimasAutoasociatyvinių neuroninių tinklų taikymas vertybinių popierių kainų prognozeiStock forecasting by applying associative neural networksLithuanian Academic Libraries Network (LABT)Darbe tiriamas autoasociatyvinių neuroninių tinklų (AANN) bei prinicipinių komponenčių (PCA) taikymas vertybinių popieriui klasterizavimui. Supažindinama su šių metodų veikimo principais, išryškinami AANN privalumai prieš PCA, apžvelgiamas dabartinis šių metodų panaudojimas akcijų klasterizavimui, kainų prognozėms, bei ateities perspektyvos. Eksperimentinio tyrimo metu sukuriama programinė įranga AANN klasterizavimui. Darbe nagrinėtų metodų pagalba suformuojami akcijų portfeliai ir stebimas jų vertės kitimas metų bėgyje.SUMMARY This is a survey on the application of auto associative neural networks and principal component analysis in clustering stocks. Main principles of these two methods are presented, reviewing the current usage of AANN and PCA and future outlook. An experiment is being carried out by building two stock portfolios using PCA. The portfolios are being monitored within one year. The main goal of the survey is to estimate the abilities of application of auto-associative neural networks stock forecasting in the US stock market. In order to reach the goal, the following tasks have been set: • To analyze the probability of general market prediction; analyze fundamental and technical factors, select the most suitable ones for further investigation. • To consider different implementations of artificial neural networks, select the most suitable ones for stock market forecasting • To compare various stock forecasting software solutions based on neural networks or different intelligent systems. • According to the chosen methods and software, perform the historical stock data analysis, build investment portfolios. • To analyze the performance of portfolios on the time basis, compare the efficiency level of different methods applied. The US stock market has been selected as the most popular market with the highest efficiency of economical laws. A set of 8 fundamental keys has been selected for the further investigation. The PCA and the AANN have been selected to compare the efficiency... [to full text]AkcijosVertybiniai popieriaiAutoasociatyviniai neuroniniai tinklaiTechninė analizėFundamentinė analizėPrincipinės komponentėsMaster thesisSimutis, RimvydasVilnius UniversityVilnius Universityhttp://vddb.library.lt/obj/LT-eLABa-0001:E.02~2008~D_20140623_182918-10081LT-eLABa-0001:E.02~2008~D_20140623_182918-10081VU-nmabpfdprjo-20140623-182918http://vddb.library.lt/fedora/get/LT-eLABa-0001:E.02~2008~D_20140623_182918-10081/DS.005.0.01.ETDUnrestrictedapplication/pdf |
collection |
NDLTD |
language |
Lithuanian |
format |
Dissertation |
sources |
NDLTD |
topic |
Akcijos Vertybiniai popieriai Autoasociatyviniai neuroniniai tinklai Techninė analizė Fundamentinė analizė Principinės komponentės |
spellingShingle |
Akcijos Vertybiniai popieriai Autoasociatyviniai neuroniniai tinklai Techninė analizė Fundamentinė analizė Principinės komponentės Skirgaila, Aurimas Autoasociatyvinių neuroninių tinklų taikymas vertybinių popierių kainų prognozei |
description |
Darbe tiriamas autoasociatyvinių neuroninių tinklų (AANN) bei prinicipinių komponenčių (PCA) taikymas vertybinių popieriui klasterizavimui. Supažindinama su šių metodų veikimo principais, išryškinami AANN privalumai prieš PCA, apžvelgiamas dabartinis šių metodų panaudojimas akcijų klasterizavimui, kainų prognozėms, bei ateities perspektyvos. Eksperimentinio tyrimo metu sukuriama programinė įranga AANN klasterizavimui. Darbe nagrinėtų metodų pagalba suformuojami akcijų portfeliai ir stebimas jų vertės kitimas metų bėgyje. === SUMMARY This is a survey on the application of auto associative neural networks and principal component analysis in clustering stocks. Main principles of these two methods are presented, reviewing the current usage of AANN and PCA and future outlook. An experiment is being carried out by building two stock portfolios using PCA. The portfolios are being monitored within one year. The main goal of the survey is to estimate the abilities of application of auto-associative neural networks stock forecasting in the US stock market. In order to reach the goal, the following tasks have been set: • To analyze the probability of general market prediction; analyze fundamental and technical factors, select the most suitable ones for further investigation. • To consider different implementations of artificial neural networks, select the most suitable ones for stock market forecasting • To compare various stock forecasting software solutions based on neural networks or different intelligent systems. • According to the chosen methods and software, perform the historical stock data analysis, build investment portfolios. • To analyze the performance of portfolios on the time basis, compare the efficiency level of different methods applied. The US stock market has been selected as the most popular market with the highest efficiency of economical laws. A set of 8 fundamental keys has been selected for the further investigation. The PCA and the AANN have been selected to compare the efficiency... [to full text] |
author2 |
Simutis, Rimvydas |
author_facet |
Simutis, Rimvydas Skirgaila, Aurimas |
author |
Skirgaila, Aurimas |
author_sort |
Skirgaila, Aurimas |
title |
Autoasociatyvinių neuroninių tinklų taikymas vertybinių popierių kainų prognozei |
title_short |
Autoasociatyvinių neuroninių tinklų taikymas vertybinių popierių kainų prognozei |
title_full |
Autoasociatyvinių neuroninių tinklų taikymas vertybinių popierių kainų prognozei |
title_fullStr |
Autoasociatyvinių neuroninių tinklų taikymas vertybinių popierių kainų prognozei |
title_full_unstemmed |
Autoasociatyvinių neuroninių tinklų taikymas vertybinių popierių kainų prognozei |
title_sort |
autoasociatyvinių neuroninių tinklų taikymas vertybinių popierių kainų prognozei |
publisher |
Lithuanian Academic Libraries Network (LABT) |
publishDate |
2014 |
url |
http://vddb.library.lt/fedora/get/LT-eLABa-0001:E.02~2008~D_20140623_182918-10081/DS.005.0.01.ETD |
work_keys_str_mv |
AT skirgailaaurimas autoasociatyviniuneuroniniutinklutaikymasvertybiniupopieriukainuprognozei AT skirgailaaurimas stockforecastingbyapplyingassociativeneuralnetworks |
_version_ |
1716707663759278080 |