Summary: | Climate change stabilization requires an unprecedented effort to change our current approach to energy production and consumption. While rising energy prices are drawing increased attention to reducing energy demand, heightened concern about the environmental consequences of fuel choice requires that this demand be met at lower emission levels. In Canada, the realization of commitments to our GHG emission goals entails reducing residential energy use - a sector responsible for close to 20 percent of end-use energy consumption. This study focuses on the energy demand and emission levels of space and water heating, since these two components comprise 76 percent of residential energy demand.
Ground source heat pumps (GSHPs) are a technology that provides heating at 25 to 30 percent of the energy consumed by even the most efficient conventional alternatives. GSHPs have been identified as the most energy-efficient, environmentally clean, and cost-effective space conditioning systems available. However, their drawbacks have been high capital costs, and uncertainty about whether the electric power used by heat pumps has higher system-wide emissions.
This thesis delineates how adoption of GSHPs in the residential sector can help align Canada’s technology choices with commitments made to the Kyoto Protocol. The manuscripts delineate conditions under which GSHP systems achieve the largest net emission reductions relative natural gas, heating oil, and electric heat counterparts. Electricity generation methods and emissions embodied in inter-provincial and international electricity trade are shown to significantly affect the emission savings achievable through GSHP. The thesis quantifies how relative fuel prices influence annual operating savings that determine how rapidly the technology can achieve payback. This analysis reveals GSHPs to hold significant potential for substantial GHG reductions at a cost savings relative to conventional alternatives; the time horizons for payback are as short as nine years for average-sized homes, and significantly shorter for larger homes.
|