Inversion of airborne electromagnetic data in 2.5D

In this work, we implement an inversion algorithm for airborne electromagnetic (AEM) data in the frequency domain by using 2D conductivity models. First, we discretize the 2.5D Maxwell's equations on a staggered grid and test the numerical accuracy of the forward solution. The inverse problem i...

Full description

Bibliographic Details
Main Author: Yu, Wing Wa
Language:English
Published: University of British Columbia 2012
Online Access:http://hdl.handle.net/2429/43416
Description
Summary:In this work, we implement an inversion algorithm for airborne electromagnetic (AEM) data in the frequency domain by using 2D conductivity models. First, we discretize the 2.5D Maxwell's equations on a staggered grid and test the numerical accuracy of the forward solution. The inverse problem is then solved by regularized minimization approach using the limited memory BFGS variant of the quasi-Newton method. Next, EM responses from a synthetic 2D conductivity model are inverted to validate the algorithm. Finally, we use the algorithm on an AEM field dataset from a RESOLVE survey and compare the inversion results to those obtained from a well-established 1D implementation.