Impaired IL-7 / IL-7Ralpha Signaling in HIV Infection: Role of the Transcriptional Repressor GFI1 in Suppressing IL-7Ralpha Expression and Driving the Proliferation of Human CD8 T Lymphocytes

Cytotoxic CD8 T lymphocytes kill virus-infected cells and are critical for viral clearance from the body. Cytokines, particularly those sharing the common gamma receptor chain (gamma c), play a key role in this cytotoxic function as well as in the growth, differentiation and homeostasis of CD8 T lym...

Full description

Bibliographic Details
Main Author: Benoit, Anita C.
Language:en
Published: 2011
Subjects:
HIV
Online Access:http://hdl.handle.net/10393/19732
Description
Summary:Cytotoxic CD8 T lymphocytes kill virus-infected cells and are critical for viral clearance from the body. Cytokines, particularly those sharing the common gamma receptor chain (gamma c), play a key role in this cytotoxic function as well as in the growth, differentiation and homeostasis of CD8 T lymphocytes. In order to exert these biological effects, cytokine-dependent signal transduction via the Janus kinase (Jak) / Signal Transducers and Activators of Transcription (STAT) pathway, the phosphoinositide 3-kinase (PI3-K) and mitogen-activated protein kinase (MAPK) pathways is required. In HIV infection however, the CD8 T lymphocytes become defective and are characterized by impaired cytotoxicity, altered differentiation patterns, and increased susceptibility to apoptosis. I hypothesized that impaired cytokine responsiveness resulting from defects in cytokine-dependent signal transduction contributes to the CD8 T cell impairment observed in HIV+ patients. I investigated the activation of the Jak/STAT signaling pathway to cytokines in CD8 T cells from HIV+ patients. Interestingly, these cells were responsive to IL-2, IL-4, IL-10, IL-15, and IL-21 at the level of their respective STAT activation. However, impairment of the IL-7 / IL-7Ralpha signaling axis was identified and characterized by a defect in STAT5 signaling. The impaired STAT5 activation correlated with a low IL-7Ralpha surface expression. The expanded population of IL- 7Ralphalow-expressing CD8 T cells, found particularly in viremic HIV+ patients, expressed higher levels of the transcriptional repressor Growth Factor Independent-1 (GFI1) compared to their IL-7Ralphahigh counterparts. This prompted further investigations into the role of GFI1 in IL-7Ralpha regulation in primary human CD8 T cells as a model. Though silencing of GFI1 did not modulate basal IL-7Ralpha expression, exogenous overexpression negatively regulated IL-7Ra surface levels. The gc cytokines, IL-2, IL-4, IL-7, and IL-15, but not IL-21, were found to efficiently suppress IL-7Ralpha expression however, only IL-4 simultaneously upregulated GFI1 expression. RNA interference studies targeting GFI1 in IL-4 stimulated CD8 T cells established a specific role for GFI1 in sustaining the suppression of IL-7Ralpha expression. Furthermore, transient downregulation of GFI1 in CD8 T cells subjected to IL- 4-dependent proliferation reduced their proliferative capacity. Other functions identified for GFI1 were in the suppression of CXCR4 and Bax expression in CD8 T cells. Studies aimed at identifying the signal transduction pathways responsible for regulating GFI1 and IL-7Ralpha expression revealed that IL-4-mediated downregulation of IL-7Ralpha expression required activation of the Jak/STAT and the PI3K pathways. On the other hand, IL-4-induced upregulation of GFI1 expression was mediated via the PI3K pathway. The JNK and P38 MAPK pathways appeared to be important as regulators of basal IL-7Ralpha expression levels, but had no statistically significant effects on GFI1 expression. To conclude, these studies have clarified the important biological effects of GFI1 in mature human CD8 T lymphocytes. Furthermore, exposure to IL-4 may generate CD8 T cell populations with an exhausted phenotype similar to those found in chronically-infected HIV+ patients, characterized by reduced cytotoxic activity and increased IL-4 production. Thus, the IL-4 study model may prove valuable for investigating the activity of human CD8 T cells in such chronic diseases and those characterized by a type 2 cytokine profile.