The Effects of Mechanical Loading on the Local Myofibrogenic Differentiation of Aortic Valve Interstitial Cells

Calcific aortic valve sclerosis is characterized by focal lesions in the valve leaflet. These lesions are rich in myofibroblasts that express α-SMA and cause fibrosis. Lesions tend to occur in regions of the leaflet that are subjected to large bending loads, suggesting a mechanobiological basis for...

Full description

Bibliographic Details
Main Author: Watt, Derek Randall
Other Authors: Simmons, Craig Alexander
Format: Others
Language:en_ca
Published: 2008
Subjects:
Online Access:http://hdl.handle.net/1807/10442
Description
Summary:Calcific aortic valve sclerosis is characterized by focal lesions in the valve leaflet. These lesions are rich in myofibroblasts that express α-SMA and cause fibrosis. Lesions tend to occur in regions of the leaflet that are subjected to large bending loads, suggesting a mechanobiological basis for myofibrogenic differentiation and valve pathogenesis. In this thesis, a bioreactor was developed to study the effect of physiological loading on myofibrogenic differentiation of valve interstitial cells. Cyclic loading of native porcine aortic valve leaflets ex vivo resulted in increased α-SMA expression, predominantly in the fibrosa and spongiosa (similar to sclerotic leaflets). Cofilin, an actin-binding protein, was also upregulated by loading, suggesting it plays a role in mechanically-induced myofibrogenesis. Similarly, loading of a tissue engineered aortic valve leaflet model resulted in increased α-SMA transcript and protein expression. These data support an integral role for mechanical stimuli in myofibrogenic differentiation and sclerosis in the aortic valve.