Structural and Functional Characterization of Clp Chaperones and Proteases in the Human Malaria Parasite Plasmodium falciparum

The Clp chaperones and proteases play a pivotal role in maintaining cellular homeostasis. They are highly conserved across prokaryotes and can also be found in the mitochondria of eukaryotes and chloroplast of plants. For my thesis, I provide an analysis of the Clp chaperones and protease in the hum...

Full description

Bibliographic Details
Main Author: Pow, Andre
Other Authors: Houry, Walid A.
Language:en_ca
Published: 2012
Subjects:
Clp
Online Access:http://hdl.handle.net/1807/33493
Description
Summary:The Clp chaperones and proteases play a pivotal role in maintaining cellular homeostasis. They are highly conserved across prokaryotes and can also be found in the mitochondria of eukaryotes and chloroplast of plants. For my thesis, I provide an analysis of the Clp chaperones and protease in the human malaria parasite Plasmodium falciparum. The parasite contains four Clp ATPases, which I term PfClpB1, PfClpB2, PfClpC, and PfClpM. One PfClpP, the proteolytic protomer, and one PfClpR, an inactive isoform, were also identified. All proteins, with the exception of PfClpB2, were found to be localized to the apicoplast, a non-photosynthetic relic plastid in P. falciparum. Both PfClpP and PfClpR form mostly homoheptameric rings as observed by various techniques. Through X-ray crystallography, PfClpP assumed a compacted tetradecamer structure similar to that observed for other ClpPs. My data suggest the presence of a ClpCRP complex in the apicoplast of P. falciparum.