The failure of silicate foam caused by bubble expansion

The mechanisms of volcanic eruptions have been studied for many decades, but there are still many unknowns due to our inability to observe the process in-situ. We have used microtomographic imaging of synthetic, volatile-rich volcanic melt foams with numerical simulations in order to investigate the...

Full description

Bibliographic Details
Main Author: O'Shaughnessy, Cedrick
Other Authors: Don Baker (Internal/Supervisor)
Format: Others
Language:en
Published: McGill University 2013
Subjects:
Online Access:http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=114425
Description
Summary:The mechanisms of volcanic eruptions have been studied for many decades, but there are still many unknowns due to our inability to observe the process in-situ. We have used microtomographic imaging of synthetic, volatile-rich volcanic melt foams with numerical simulations in order to investigate the effects that bubble wall thickness distributions have on the critical force per fibre (analogous to strength) of magmatic foams.Synchrotron X-ray microtomography was used to image experimentally produced, hydrous melts as they vesiculated, expanded and ultimately failed. The microtomographic imaging was conducted as the melt was heated to 1200 C in order to image the sample at a resolution of 5.96 um from the beginning of bubble expansion to 18 s of bubble growth. These experiments led to bubble wall thickness data over the lifespan of the foam. These data were then used as the input for computer simulations based on the fibre bundle model (FBM) where the squared widths of the bubble walls become the squared widths (and therefore strengths) of the fibres. The critical force per fibre of all experimental data sets does not change significantly with time. The relatively constant strength together with the insignificant change in the bubble wall thickness distributions with time imply that these magmatic foams have constant strength (the water-poor sample) or are not weakening with time, and if given enough growth time without fragmentation the constant strength could decrease potential volcanic hazards. === Les mécanismes des éruptions volcaniques ont été étudié pendant plusieurs dizaines d'années, mais il y a encore plusieurs inconnus dut au fait que nous ne pouvons pas observer ces processus in-situ. Pour ce projet de recherche nous avons utilisé l'imagerie microtomographique sur des échantillons de vitres volcaniques, riches en volatiles, avec des simulations numériques afin de voir les effets de la distribution des épaisseurs des murs sur la force relative du foam magmatique durant son évolution. La microtomographie a été utilisé pour obtenir des images 2-dimensionnelles pour reconstructions 3-dimensionnelles d'un foam magmatique pendant les 18 premières secondes de son évolution temporel. Les échantillons sont chauffés dans un four à base de laser jusqu'à 1200 C. Nous pouvons prendre des images de résolution près de 5.96 um. Nous avons obtenu des valeurs pour la distribution des épaisseurs des murs et à l'aide de simulations numériques nous avons trouvé que la valeur de force par fibre ne changent quasiment pas dans les deux échantillions. Nous pensons que le peu de chagements dans la force par fibre ainsi que les propriétés de connectivités indiquent que, si un foam peu survivre aux premiers moments chaotiques, il est possible que cela suffit pour diminuer les chances d'éruptions volcaniques dévastatrices.