A stoichiometric calibration method for dual energy computed tomography

While dose calculations are typically performed using a simplistic correspondence of Hounsfield units to electron density, recent developments in Dual Energy Computed Tomography (DECT) could provide significant improvements in characterizing human tissues in radiotherapy. The present study aims to e...

Full description

Bibliographic Details
Main Author: Bourque, Alexandra
Other Authors: Hugo Bouchard (Internal/Supervisor)
Format: Others
Language:en
Published: McGill University 2014
Subjects:
Online Access:http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=121506
id ndltd-LACETR-oai-collectionscanada.gc.ca-QMM.121506
record_format oai_dc
spelling ndltd-LACETR-oai-collectionscanada.gc.ca-QMM.1215062014-05-23T03:53:40ZA stoichiometric calibration method for dual energy computed tomographyBourque, AlexandraPhysics - Radiation While dose calculations are typically performed using a simplistic correspondence of Hounsfield units to electron density, recent developments in Dual Energy Computed Tomography (DECT) could provide significant improvements in characterizing human tissues in radiotherapy. The present study aims to establish and validate a DECT mathematical formalism and evaluate its accuracy in characterizing tissue in terms of electron density and effective atomic number for radiotherapy applications. A relationship between the effective atomic number and the mean excitation energy is proposed to calculate parameters for proton and heavy ion therapy, as the stopping power. A novel definition of the effective atomic number is also developed. A Gammex 467 phantom is scanned at different energy couples with a Siemens SOMATOM Definition Flash in order to apply the calibration-based formalism. The root mean square errors on the extracted parameters for the 100-140/Sn energy couple are 0.46% for the relative electron density, 2.5% for the effective atomic number, 4.9% for the mean excitation energy and 0.67% for the proton stopping power. The accuracy of such results presents many advantages in the field of radiation therapy. Thus, this work is expected to bring significant improvements in Monte Carlo dose calculation in future clinical applications.Bien que les calculs de dose soient généralement effectués en utilisant une correspondance directe entre les unités Hounsfield et la densité électronique, les développements récents en tomodensitométrie à double énergie (DECT) pourraient apporter des améliorations significatives dans la caractérisation des tissus humains en radiothérapie. La présente étude vise à établir et valider un formalisme mathématique DECT et à évaluer sa précision dans la caractérisation des tissus en termes de densité électronique et de numéro atomique effectif pour les applications de radiothérapie. Une relation entre le nombre atomique effectif et l'énergie moyenne d'excitation est proposée afin de calculer des paramètres pour la thérapie par protons et par ions lourds, tel que le pouvoir d'arrêt. Une nouvelle définition du nombre atomique effectif est également développée. Un fantôme Gammex 467 est scanné à différents couples d'énergie avec un Siemens SOMATOM Definition Flash afin d'appliquer le formalisme. L'erreur moyenne quadratique des paramètres extraits pour le couple d'énergie 100-140/Sn sont 0.46% pour la densité électronique relative à l'eau, 2.5% pour le nombre atomique effectif, 4.9% pour l'énergie d'excitation moyenne et 0.67% pour le pouvoir d'arrêt. L'exactitude de ces résultats présente de nombreux avantages en radiothérapie. Ainsi, ce travail pourrait apporter des améliorations significatives en calcul de dose Monte Carlo pour de futures applications cliniques.McGill UniversityHugo Bouchard (Internal/Supervisor)Jan Peter Frans Seuntjens (Internal/Cosupervisor2)2014Electronic Thesis or Dissertationapplication/pdfenElectronically-submitted thesesAll items in eScholarship@McGill are protected by copyright with all rights reserved unless otherwise indicated.Master of Science (Medical Physics Unit) http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=121506
collection NDLTD
language en
format Others
sources NDLTD
topic Physics - Radiation
spellingShingle Physics - Radiation
Bourque, Alexandra
A stoichiometric calibration method for dual energy computed tomography
description While dose calculations are typically performed using a simplistic correspondence of Hounsfield units to electron density, recent developments in Dual Energy Computed Tomography (DECT) could provide significant improvements in characterizing human tissues in radiotherapy. The present study aims to establish and validate a DECT mathematical formalism and evaluate its accuracy in characterizing tissue in terms of electron density and effective atomic number for radiotherapy applications. A relationship between the effective atomic number and the mean excitation energy is proposed to calculate parameters for proton and heavy ion therapy, as the stopping power. A novel definition of the effective atomic number is also developed. A Gammex 467 phantom is scanned at different energy couples with a Siemens SOMATOM Definition Flash in order to apply the calibration-based formalism. The root mean square errors on the extracted parameters for the 100-140/Sn energy couple are 0.46% for the relative electron density, 2.5% for the effective atomic number, 4.9% for the mean excitation energy and 0.67% for the proton stopping power. The accuracy of such results presents many advantages in the field of radiation therapy. Thus, this work is expected to bring significant improvements in Monte Carlo dose calculation in future clinical applications. === Bien que les calculs de dose soient généralement effectués en utilisant une correspondance directe entre les unités Hounsfield et la densité électronique, les développements récents en tomodensitométrie à double énergie (DECT) pourraient apporter des améliorations significatives dans la caractérisation des tissus humains en radiothérapie. La présente étude vise à établir et valider un formalisme mathématique DECT et à évaluer sa précision dans la caractérisation des tissus en termes de densité électronique et de numéro atomique effectif pour les applications de radiothérapie. Une relation entre le nombre atomique effectif et l'énergie moyenne d'excitation est proposée afin de calculer des paramètres pour la thérapie par protons et par ions lourds, tel que le pouvoir d'arrêt. Une nouvelle définition du nombre atomique effectif est également développée. Un fantôme Gammex 467 est scanné à différents couples d'énergie avec un Siemens SOMATOM Definition Flash afin d'appliquer le formalisme. L'erreur moyenne quadratique des paramètres extraits pour le couple d'énergie 100-140/Sn sont 0.46% pour la densité électronique relative à l'eau, 2.5% pour le nombre atomique effectif, 4.9% pour l'énergie d'excitation moyenne et 0.67% pour le pouvoir d'arrêt. L'exactitude de ces résultats présente de nombreux avantages en radiothérapie. Ainsi, ce travail pourrait apporter des améliorations significatives en calcul de dose Monte Carlo pour de futures applications cliniques.
author2 Hugo Bouchard (Internal/Supervisor)
author_facet Hugo Bouchard (Internal/Supervisor)
Bourque, Alexandra
author Bourque, Alexandra
author_sort Bourque, Alexandra
title A stoichiometric calibration method for dual energy computed tomography
title_short A stoichiometric calibration method for dual energy computed tomography
title_full A stoichiometric calibration method for dual energy computed tomography
title_fullStr A stoichiometric calibration method for dual energy computed tomography
title_full_unstemmed A stoichiometric calibration method for dual energy computed tomography
title_sort stoichiometric calibration method for dual energy computed tomography
publisher McGill University
publishDate 2014
url http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=121506
work_keys_str_mv AT bourquealexandra astoichiometriccalibrationmethodfordualenergycomputedtomography
AT bourquealexandra stoichiometriccalibrationmethodfordualenergycomputedtomography
_version_ 1716667682619654144