Root and canopy characteristics of maize types with extreme architectures

Studies of corn root morphology, canopy description, light and nutrient relationships, have focused on conventional corn hybrids. We are now extending these studies to other corn types with contrasting canopy and root architectures. Field and greenhouse experiments were carried out in order to chara...

Full description

Bibliographic Details
Main Author: Costa, Carlos.
Format: Others
Language:en
Published: McGill University 2000
Subjects:
Online Access:http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=36898
Description
Summary:Studies of corn root morphology, canopy description, light and nutrient relationships, have focused on conventional corn hybrids. We are now extending these studies to other corn types with contrasting canopy and root architectures. Field and greenhouse experiments were carried out in order to characterize root morphology, N status in the plant and its relationship with yield and yield components, canopy architecture and light interception of these genotypes. The indoor experiments investigated root morphology and how N affects it. Root fractal geometry and its relationship with standard measured root variables were investigated. The field research, at two sites and over two growing seasons, examined (i) maize canopy architecture with regard to light interception and (ii) nitrogen effects on grain yield of different maize genotypes. Four genotypic types were included: (i) Leafy reduced-stature, Lfy1rd1 (LRS), (ii) non Leafy-reduced stature, lfyrd1 (NLRS), (iii) Leafy normal stature, Lfy1Rd1 (LNS), and (iv) conventional commercial hybrids, lfy1Rd1. Pioneer 3905 served as the check hybrid for late maturity, and Pioneer 3979, the check for early maturity. The work allowed development of following methods: (i) root sampling for measurement of large root systems, (ii) staining to enhance root contrast for measurement with a scanner-based software system, (iii) sample size determination for SPAD meter readings, and (iv) the design and construction of a mobile and multi-strata device for measurement of light interception. Data were collected for mathematical characterization of canopies (i.e. leaf angle, co-ordinates of the maximum height of the leaf, co-ordinates of the leaf tip), plant N status (SPAD meter readings), light interception, yield and grain yield components. Conventional hybrids generally showed greater root length and surface area than their leafy genotypic counterparts at early developmental stages (i.e. up to 15 days from emergence). However, Leafy geno