Downstream processing of recombinant retroviral vectors

Les vecteurs rétroviraux dérivés du virus Moloney de la leucémie murine (MoMLV) ont été utilisés pour livrer des gènes depuis plus de 20 ans et ils continuent d’être le meilleur outil disponible pour transférer de façon stable et efficace des gènes thérapeutiques dans différents types de cellules. B...

Full description

Bibliographic Details
Main Author: Segura, Maria Delas Mercèdes
Other Authors: Garnier, Alain
Format: Others
Language:EN
Published: Université Laval 2006
Subjects:
Online Access:http://www.theses.ulaval.ca/2006/23658/23658.html
http://www.theses.ulaval.ca/2006/23658/23658.pdf
Description
Summary:Les vecteurs rétroviraux dérivés du virus Moloney de la leucémie murine (MoMLV) ont été utilisés pour livrer des gènes depuis plus de 20 ans et ils continuent d’être le meilleur outil disponible pour transférer de façon stable et efficace des gènes thérapeutiques dans différents types de cellules. Bien que la plupart des études précliniques de thérapie génique utilisent des surnageants bruts ou concentrés de vecteurs rétroviraux, l’étape de purification, pour éliminer le sérum et les impuretés dérivées des cellules hôtes contenus dans ces préparations, est incontournable pour les applications cliniques. Cette thèse décrit le développement de stratégies de purification des vecteurs rétroviraux. Au cours de ce projet, deux procédés complets de purification (à partir d’un surnageant brut de rétrovirus jusqu’au virus de grade clinique) ont été établis, vérifiés, et leurs performances ont été analysées en détail. La filtration sur membrane a contribuée à la clarification, la concentration, à l’échange de tampon et à la purification partielle des particules retrovirales à partir de surnageants à l’état brut sans aucune perte significative d’infectivité virale. Deux nouvelles méthodes de purification, spécifiquement adaptées aux caractéristiques biochimiques et physiques des particules rétrovirales, ont été développées. La première méthode de purification des particules rétrovirales, utilise la chromatographie d’affinité sur colonne d'héparine suivie d’un tamis moléculaire. L’avantage principal d’utiliser les techniques de chromatographie pour la purification des virus, est d’offrir la possibilité de purifier à grande échelle les rétrovirus de façon sélective et efficace. De plus, la chromatographie d’affinité sur colonne d'héparine a donné lieu à des taux de récupération exceptionnels de particules infectieuses et s’est avérée utile pour la purification des vecteurs rétroviraux produits par différentes lignées cellulaires indépendamment de l’enveloppe protéique utilisée pour le pseudo-typage. La deuxième méthode de purification est basée sur la technique de centrifugation zonale transitoire utilisant l’iodixanol comme milieu pour former un gradient. La force de cette technique repose sur les hauts niveaux de pureté obtenus en une seule étape de purification et la capacité à séparer les particules virales des espèces proches telles que les vecteurs défectueux et / ou les vésicules membranaires, qui posent un sérieux défi dans les procédés de purification. Les récupérations finales en particules infectieuses (~38%) et le degré de pureté atteint (plus de 95%) étaient comparables avec l’une ou l’autre des stratégies de purification utilisées. Les méthodes décrites dans cette thèse représentent une amélioration significative sur la méthodologie conventionnelle utilisant un gradient de densité de sucrose pour la purification des rétrovirus et contribuera certainement à l’avancement technologique dans le domaine de la thérapie génique. === Retroviral vectors derived from the Moloney murine leukemia virus (MoMLV) have been used as gene delivery vehicles for more than two decades and continue to be the best available tool for stable and efficient transfer of therapeutic genes into various cell types. Although most gene therapy preclinical studies use crude or concentrated retroviral vector supernatants, purification to eliminate serum and host-derived impurities contained in these stocks is a must for clinical applications. This thesis describes the development of downstream processing strategies for retroviral vectors. During the course of this project, two complete multi-step purification schemes (from crude retrovirus supernatant to clinical-grade virus) were designed, tested and their performance analyzed in detail. Membrane filtration contributed to the clarification, concentration, buffer exchange and partial purification of retroviral particles from crude supernatants with essentially no loss in vector infectivity. Two novel purification methods specifically tailored to the biochemical and physical features of retroviral particles were developed. The first method consists of the chromatographic purification of retroviral particles by heparin affinity chromatography followed by size exclusion chromatography. The main advantage of employing chromatography technology for virus purification is that it offers the possibility to selectively and efficiently purify retroviruses on a large-scale. Moreover, heparin affinity chromatography resulted in exceptional recoveries of infective particles and proved to be useful for the purification of retroviral vectors produced by different packaging cell lines independently of the Env-protein used for pseudotyping. The second purification method is based on a rate zonal centrifugation technique using iodixanol as gradient medium. The power of this technique was revealed by the high levels of purity achieved in a single purification step and its potential to separate viral particles from closely-related species such as defective vector forms and/or cell membrane vesicles, all of which pose a serious challenge in downstream processing. The overall yield of infective particles (~38%) and level of purity achieved (over 95%) using either purification strategy was comparable. The methods described in this thesis represent a significant improvement over the conventional sucrose density gradient methodology used for retrovirus purification and will hopefully contribute to the technological progress in the field of gene therapy. ===