Summary: | A new concept of hydrokinetic turbine based on oscillating hydrofoils is investigated.
The objective of this study is to analyze the unsteady hydrodynamics of oscillating
foils, to optimize their motions for maximum power extraction and to demonstrate in
practice the potential of such a concept of turbine through experiments on a prototype.
The analysis and optimization have been conducted via low Reynolds number,
laminar numerical simulations as well as high Reynolds number, Unsteady Reynolds-
Averaged Navier-Stokes (URANS) computations. A 2D and 3D numerical methodology
relying on the use of sliding interfaces and suitable to the case of foils undergoing oscillations
of large amplitudes is presented. Using that numerical strategy, a parametric
study is conducted and leads to the identification of the dominant parameters impacting
the hydrodynamic performance of the oscillating-foil turbine. Based on a large number
of simulations, the performance of the oscillating-foil turbine has been mapped in
relevant parametric spaces. In addition, optimal spatial configurations of turbines with
tandem foils is also provided.
The potential of the oscillating-foils hydrokinetic turbine has also been formally
established in this work through field tests on a 2kW tandem-foils prototype. Its
performance has been found to be competitive with the best competing technologies
based on horizontal-axis rotor-blades. The experimental data have also been used here
to validate the numerical models and have been found to strongly support the 3D
numerical simulations. === Un nouveau concept d’hydrolienne bas´ee sur des ailes oscillantes est ´etudi´e. La pr´esente
´etude a pour but d’´etudier l’hydrodynamique instationnaire d’une aile oscillante, d’optimiser
son mouvement afin de maximiser l’extraction de puissance et de d´emontrer
le potentiel d’une turbine `a ailes oscillantes par une campagne exp´erimentale sur un
prototype.
L’analyse et l’optimisation de la turbine `a ailes oscillantes ont ´et´e effectu´ees par
simulations num´eriques `a bas nombre de Reynolds (laminaire) ainsi qu’`a haut nombre
de Reynolds (Unsteady Reynolds-Averaged Navier-Stokes; URANS). Une strat´egie
num´erique 2D et 3D impliquant l’utilisation d’interfaces de glissement a ´et´e d´evelopp´ee
sp´ecifiquement pour cette application de corps oscillants avec de grandes amplitudes de
mouvement. `A l’aide de cette strat´egie num´erique, une ´etude param´etrique fut effectu´ee
et permit l’identification des param`etres dominants en ce qui a trait `a la performance
hydrodynamique de la turbine `a ailes oscillantes. Bas´e sur un grand nombre de simulations,
les zones optimales de production de puissance ont ´et´e identifi´ees dans les
espaces param´etriques pertinents. De plus, des configurations spatiales optimales ont
´et´e identifi´ees pour le cas de turbines `a ailes oscillantes en tandem.
Le potentiel de l’hydrolienne `a ailes oscillantes a ´et´e formellement ´etabli dans ce
travail grˆace `a une campagne exp´erimentale sur un prototype `a ailes en tandem de
2 kW. La performance de ce dernier s’av´era comp´etitive avec celle des hydroliennes de
type rotors `a axe horizontal que l’on retrouve dans la majorit´e des designs d’hydrolienne
propos´es. Les donn´ees de la campagne exp´erimentale ont ´egalement permis de valider
les r´esultats des simulations num´eriques par leur accord avec les simulations 3D. === Tableau d'honneur de la FÉSP
|