Modeling Effects of Coupled Convection and Co2 Injection in Stimulating Geopressured Geothermal Reservoirs

Geopressured geothermal brines are a vast geothermal resource in the US Gulf of Mexico region. In particular, geopressured sandstones near salt domes are potential sources of geothermal energy because salt diapirs with high thermal conductivities may pierce younger, cooler strata. These characterist...

Full description

Bibliographic Details
Main Author: Plaksina, Tatyana
Other Authors: Radonjic, Mileva
Format: Others
Language:en
Published: LSU 2011
Subjects:
Online Access:http://etd.lsu.edu/docs/available/etd-06302011-124114/
Description
Summary:Geopressured geothermal brines are a vast geothermal resource in the US Gulf of Mexico region. In particular, geopressured sandstones near salt domes are potential sources of geothermal energy because salt diapirs with high thermal conductivities may pierce younger, cooler strata. These characteristics enhance transfer heat from older, hotter strata at the base of the diapir into shallower strata. Moreover, widespread geopressure in the Gulf region tends to preserve permeability, enhancing productivity. As an example, the Camerina A sand of South Louisiana was chosen as a geomodel for a numerical simulation study of effects of CO2 injection and coupled convection as a method of geothermal development. This study presents scenarios for heat harvesting from typical Gulf of Mexico aquifers including Camerina A that take advantage of coupled convection and simultaneous CO2 sequestration. Suites of TOUGH2 numerical simulations demonstrate benefits of introducing CO2 injection wells, varying locations of injection/production wells, and exploiting gravity segregation of the fluids.