Validation of the use of low enriched uranium as a replacement for highly enriched uranium in US submarine reactors

Thesis: S.M., Massachusetts Institute of Technology, Department of Nuclear Science and Engineering, 2015. === This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections. === Cataloged from student-submitted PDF ve...

Full description

Bibliographic Details
Main Author: Hanlon, Brendan Patrick
Other Authors: R. Scott Kemp.
Format: Others
Language:English
Published: Massachusetts Institute of Technology 2016
Subjects:
Online Access:http://hdl.handle.net/1721.1/103656
Description
Summary:Thesis: S.M., Massachusetts Institute of Technology, Department of Nuclear Science and Engineering, 2015. === This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections. === Cataloged from student-submitted PDF version of thesis. === Includes bibliographical references (pages 153-160). === The US Navy has long used highly enriched uranium (HEU) in naval reactors for a variety of technical reasons. In a series of studies, the Department of Naval Reactors determined that switching to low enriched uranium (LEU) was impossible using current fuel designs, but may be possible with a dedicated program to investigate new fuel materials. This thesis simulated an HEU fueled submarine reactor using a uranium oxide-zirconium dispersion fuel, and compared it to an LEU reactor using a uranium-molybdenum alloy fuel. The required energy output of an attack submarine was used to set the burnup requirement of the HEU (333 MWd/kg) and LEU (93.5 MWd/kg) fueled reactors, and each reactor was depleted to the end of life. The results showed that naval reactors could be switched to LEU without sacrificing the lifetime submarine core or increasing reactor volume. Even if unstudied technological details render this impossible, an LEU core would require only a single refueling over the life of an attack submarine. This would necessitate a 3.25% increase in submarine fleet size, which is small compared to the average Department of Defense project cost overrun. === by Brendan Patrick Hanlon. === S.M.