Towards high-bandwidth scanning impedance imaging

Thesis: S.M., Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science, 2016. === This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections. === Cataloged from student-subm...

Full description

Bibliographic Details
Main Author: Kumar, Rakesh, Ph. D. Massachusetts Institute of Technology
Other Authors: Jeffrey H. Lang and David L. Trumper.
Format: Others
Language:English
Published: Massachusetts Institute of Technology 2017
Subjects:
Online Access:http://hdl.handle.net/1721.1/107294
Description
Summary:Thesis: S.M., Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science, 2016. === This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections. === Cataloged from student-submitted PDF version of thesis. === Includes bibliographical references (pages 107-109). === Contact-less, three-dimensional scanning is a highly important field for the semiconductor industry. By using a system of high-bandwidth impedance sensors and drive electronics, the physical constituents of ICs such as buried/surface dielectrics, buried/surface conductors and PN junctions could be detected. This thesis takes an initial step toward high-bandwidth electroquasistatic (EQS) imaging by exploring the use of high-frequency imaging. When combined with impedance sensors having a high spatial density, it could be possible to develop a very-high-bandwidth scanning imaging system. The system explored here uses a capacitively-coupled electrode array in order to distinguish various features such as a dielectric layer or a variable air gap based on measured electrode impedance. The frequency at which the impedance is measured is near 500 MHz. Also, this system can be potentially used to image depth information and dielectric composition by using multi-wavelength electrode arrays. This thesis presents the selection and layout for the high-speed drive electronics and the construction and modeling of the driven electrode arrays. Validation experiments to illustrate capacitive sensing ability are also performed. The system is able to identify surface topography, distinguish surface dielectrics from metals, and discern changes in bulk conductivity. === by Rakesh Kumar. === S.M.