Essays on asymptotic methods in econometrics

Thesis: Ph. D., Massachusetts Institute of Technology, Department of Economics, 2018. === This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections. === Cataloged student-submitted from PDF version of thesis. ===...

Full description

Bibliographic Details
Main Author: Kaji, Tetsuya, Ph. D. Massachusetts Institute of Technology
Other Authors: Anna Mikusheva and Victor Chernozhukov.
Format: Others
Language:English
Published: Massachusetts Institute of Technology 2018
Subjects:
Online Access:http://hdl.handle.net/1721.1/117812
id ndltd-MIT-oai-dspace.mit.edu-1721.1-117812
record_format oai_dc
spelling ndltd-MIT-oai-dspace.mit.edu-1721.1-1178122019-05-02T15:44:29Z Essays on asymptotic methods in econometrics Kaji, Tetsuya, Ph. D. Massachusetts Institute of Technology Anna Mikusheva and Victor Chernozhukov. Massachusetts Institute of Technology. Department of Economics. Massachusetts Institute of Technology. Department of Economics. Economics. Thesis: Ph. D., Massachusetts Institute of Technology, Department of Economics, 2018. This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections. Cataloged student-submitted from PDF version of thesis. Includes bibliographical references. This thesis consists of three essays that contribute to statistical methods in econometrics. Chapter 1 develops new theory of integrable empirical processes and applies it to outlier robustness analysis. A frequent concern in empirical research is to ensure that a handful of outlying observations have not driven the key empirical findings. This chapter constructs a formal statistical test of outlier robustness and provides its theoretical foundation. The key is to observe that statistics related to outlier robustness analyses are represented as L-statistics--integrals of empirical quantile functions with respect to sample selection measures-and to consider these elements in appropriate normed spaces. We characterize the asymptotic distribution of L-statistics and prove the validity of nonparametric bootstrap. An empirical application shows the utility of the proposed test. Chapter 2 establishes the theory of weak identification in semiparametric models and provides an efficiency concept for weakly identified parameters. We first formulate the defining feature of weak identification as weak regularity, the asymptotic dependence of a parameter on the model score. While this feature deems consistent and equivariant estimation of a weakly regular parameter impossible, we show that there exists an underlying parameter that is regular and fully characterizes the weakly regular parameter. Using the minimal sufficient underlying regular parameter, we define weak efficiency for a weakly regular parameter through local asymptotic Rao-Blackwellization. Simulation shows that efficiency of popular estimators in linear IV models can be improved under heteroskedasticity. Chapter 3 provides a method to account for estimation error in financial risk control. As accuracy of estimated risk is subject to estimation error, risk control based on estimated risk may fail to control the true, unobservable risk. We show that risk measures that give bounds to the probabilities of bad events can be effectively controlled by the Bonferroni inequality when the distributions of their estimators are known or estimable. We call such risk measures tail risk measures and show that they subsume Value-at-Risk and expected shortfall. An empirical application to portfolio risk management shows that a multiplier of 1.3 to 1.9 can control the true risk probability of expected shortfall at 10%. by Tetsuya Kaji. Ph. D. 2018-09-17T14:50:40Z 2018-09-17T14:50:40Z 2018 2018 Thesis http://hdl.handle.net/1721.1/117812 1051459321 eng MIT theses are protected by copyright. They may be viewed, downloaded, or printed from this source but further reproduction or distribution in any format is prohibited without written permission. http://dspace.mit.edu/handle/1721.1/7582 229 pages application/pdf Massachusetts Institute of Technology
collection NDLTD
language English
format Others
sources NDLTD
topic Economics.
spellingShingle Economics.
Kaji, Tetsuya, Ph. D. Massachusetts Institute of Technology
Essays on asymptotic methods in econometrics
description Thesis: Ph. D., Massachusetts Institute of Technology, Department of Economics, 2018. === This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections. === Cataloged student-submitted from PDF version of thesis. === Includes bibliographical references. === This thesis consists of three essays that contribute to statistical methods in econometrics. Chapter 1 develops new theory of integrable empirical processes and applies it to outlier robustness analysis. A frequent concern in empirical research is to ensure that a handful of outlying observations have not driven the key empirical findings. This chapter constructs a formal statistical test of outlier robustness and provides its theoretical foundation. The key is to observe that statistics related to outlier robustness analyses are represented as L-statistics--integrals of empirical quantile functions with respect to sample selection measures-and to consider these elements in appropriate normed spaces. We characterize the asymptotic distribution of L-statistics and prove the validity of nonparametric bootstrap. An empirical application shows the utility of the proposed test. Chapter 2 establishes the theory of weak identification in semiparametric models and provides an efficiency concept for weakly identified parameters. We first formulate the defining feature of weak identification as weak regularity, the asymptotic dependence of a parameter on the model score. While this feature deems consistent and equivariant estimation of a weakly regular parameter impossible, we show that there exists an underlying parameter that is regular and fully characterizes the weakly regular parameter. Using the minimal sufficient underlying regular parameter, we define weak efficiency for a weakly regular parameter through local asymptotic Rao-Blackwellization. Simulation shows that efficiency of popular estimators in linear IV models can be improved under heteroskedasticity. Chapter 3 provides a method to account for estimation error in financial risk control. As accuracy of estimated risk is subject to estimation error, risk control based on estimated risk may fail to control the true, unobservable risk. We show that risk measures that give bounds to the probabilities of bad events can be effectively controlled by the Bonferroni inequality when the distributions of their estimators are known or estimable. We call such risk measures tail risk measures and show that they subsume Value-at-Risk and expected shortfall. An empirical application to portfolio risk management shows that a multiplier of 1.3 to 1.9 can control the true risk probability of expected shortfall at 10%. === by Tetsuya Kaji. === Ph. D.
author2 Anna Mikusheva and Victor Chernozhukov.
author_facet Anna Mikusheva and Victor Chernozhukov.
Kaji, Tetsuya, Ph. D. Massachusetts Institute of Technology
author Kaji, Tetsuya, Ph. D. Massachusetts Institute of Technology
author_sort Kaji, Tetsuya, Ph. D. Massachusetts Institute of Technology
title Essays on asymptotic methods in econometrics
title_short Essays on asymptotic methods in econometrics
title_full Essays on asymptotic methods in econometrics
title_fullStr Essays on asymptotic methods in econometrics
title_full_unstemmed Essays on asymptotic methods in econometrics
title_sort essays on asymptotic methods in econometrics
publisher Massachusetts Institute of Technology
publishDate 2018
url http://hdl.handle.net/1721.1/117812
work_keys_str_mv AT kajitetsuyaphdmassachusettsinstituteoftechnology essaysonasymptoticmethodsineconometrics
_version_ 1719027151470067712