Towards a more ethical animal model in biomedical research

Thesis: S.M., Massachusetts Institute of Technology, School of Architecture and Planning, Program in Media Arts and Sciences, 2018. === Cataloged from PDF version of thesis. === Includes bibliographical references (pages [69]-[75]). === Since the early twentieth century, mice have emerged as the sta...

Full description

Bibliographic Details
Main Author: Najjar, Deborah Anne
Other Authors: Kevin Esvelt.
Format: Others
Language:English
Published: Massachusetts Institute of Technology 2019
Subjects:
Online Access:http://hdl.handle.net/1721.1/120675
id ndltd-MIT-oai-dspace.mit.edu-1721.1-120675
record_format oai_dc
spelling ndltd-MIT-oai-dspace.mit.edu-1721.1-1206752019-05-02T16:14:55Z Towards a more ethical animal model in biomedical research Najjar, Deborah Anne Kevin Esvelt. Program in Media Arts and Sciences (Massachusetts Institute of Technology) Program in Media Arts and Sciences (Massachusetts Institute of Technology) Program in Media Arts and Sciences () Thesis: S.M., Massachusetts Institute of Technology, School of Architecture and Planning, Program in Media Arts and Sciences, 2018. Cataloged from PDF version of thesis. Includes bibliographical references (pages [69]-[75]). Since the early twentieth century, mice have emerged as the standard mammalian model organism for biomedical research. When pain relief is provided during experimentation, it typically comes in the form of transient and sometimes ineffective analgesics or anesthesia. This thesis proposes an alternative to the current method of research in the form of an engineered mouse model in which pain sensing can be ablated before an experiment. An ERT2-inducible Cre recombinase under the Wntl promoter was designed to be combined with a floxed Nav1.7 ion channel mouse model. When a 4- hydrotamoxifan class small molecule is fed to the mouse, Cre recombinase expression in the peripheral nervous system will disrupt function of the ion channel involved in inflammatory and mechanosensory pain. Additional designs for floxed Nav1.6 ion channel and Nax ion-like channel were made to explore disruption of peripheral cancer-induced neuropathic pain. In parallel with mouse model development, a survey was conducted to understand the potential for adoption of this new animal model by researchers. The survey was sent to IACUC members questioning if this model was needed, as well as how it may be regulated under the existing protocol approval framework. Results indicated that there is a both a need and desire for further refinement strategies within animal research, and that this inducible painfree mouse model could be categorized as alternative analgesic upon sufficient characterization and peer-reviewed publications. Additional input was provided that will shape testing done on the generated animals to assure that this model can mitigate animal suffering while still recapitulating important biological processes investigated in biomedical research. by Deborah Anne Najjar. S.M. 2019-03-01T19:57:15Z 2019-03-01T19:57:15Z 2018 2018 Thesis http://hdl.handle.net/1721.1/120675 1088506342 eng MIT theses are protected by copyright. They may be viewed, downloaded, or printed from this source but further reproduction or distribution in any format is prohibited without written permission. http://dspace.mit.edu/handle/1721.1/7582 107 unnumbered pages application/pdf Massachusetts Institute of Technology
collection NDLTD
language English
format Others
sources NDLTD
topic Program in Media Arts and Sciences ()
spellingShingle Program in Media Arts and Sciences ()
Najjar, Deborah Anne
Towards a more ethical animal model in biomedical research
description Thesis: S.M., Massachusetts Institute of Technology, School of Architecture and Planning, Program in Media Arts and Sciences, 2018. === Cataloged from PDF version of thesis. === Includes bibliographical references (pages [69]-[75]). === Since the early twentieth century, mice have emerged as the standard mammalian model organism for biomedical research. When pain relief is provided during experimentation, it typically comes in the form of transient and sometimes ineffective analgesics or anesthesia. This thesis proposes an alternative to the current method of research in the form of an engineered mouse model in which pain sensing can be ablated before an experiment. An ERT2-inducible Cre recombinase under the Wntl promoter was designed to be combined with a floxed Nav1.7 ion channel mouse model. When a 4- hydrotamoxifan class small molecule is fed to the mouse, Cre recombinase expression in the peripheral nervous system will disrupt function of the ion channel involved in inflammatory and mechanosensory pain. Additional designs for floxed Nav1.6 ion channel and Nax ion-like channel were made to explore disruption of peripheral cancer-induced neuropathic pain. In parallel with mouse model development, a survey was conducted to understand the potential for adoption of this new animal model by researchers. The survey was sent to IACUC members questioning if this model was needed, as well as how it may be regulated under the existing protocol approval framework. Results indicated that there is a both a need and desire for further refinement strategies within animal research, and that this inducible painfree mouse model could be categorized as alternative analgesic upon sufficient characterization and peer-reviewed publications. Additional input was provided that will shape testing done on the generated animals to assure that this model can mitigate animal suffering while still recapitulating important biological processes investigated in biomedical research. === by Deborah Anne Najjar. === S.M.
author2 Kevin Esvelt.
author_facet Kevin Esvelt.
Najjar, Deborah Anne
author Najjar, Deborah Anne
author_sort Najjar, Deborah Anne
title Towards a more ethical animal model in biomedical research
title_short Towards a more ethical animal model in biomedical research
title_full Towards a more ethical animal model in biomedical research
title_fullStr Towards a more ethical animal model in biomedical research
title_full_unstemmed Towards a more ethical animal model in biomedical research
title_sort towards a more ethical animal model in biomedical research
publisher Massachusetts Institute of Technology
publishDate 2019
url http://hdl.handle.net/1721.1/120675
work_keys_str_mv AT najjardeborahanne towardsamoreethicalanimalmodelinbiomedicalresearch
_version_ 1719037240880922624