Integrated navigation architecture analysis for Moon and Mars exploration

Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Aeronautics and Astronautics, 2005. === Includes bibliographical references (p. 127-131). === The new solar system exploration objectives announced in January 2004 have the goal of sending humans back to the Moon by the year 2020 in prep...

Full description

Bibliographic Details
Main Author: Chabot, Thomas
Other Authors: Jonathan P. How.
Format: Others
Language:English
Published: Massachusetts Institute of Technology 2006
Subjects:
Online Access:http://hdl.handle.net/1721.1/32440
id ndltd-MIT-oai-dspace.mit.edu-1721.1-32440
record_format oai_dc
spelling ndltd-MIT-oai-dspace.mit.edu-1721.1-324402019-05-02T15:33:39Z Integrated navigation architecture analysis for Moon and Mars exploration Chabot, Thomas Jonathan P. How. Massachusetts Institute of Technology. Dept. of Aeronautics and Astronautics. Massachusetts Institute of Technology. Dept. of Aeronautics and Astronautics. Aeronautics and Astronautics. Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Aeronautics and Astronautics, 2005. Includes bibliographical references (p. 127-131). The new solar system exploration objectives announced in January 2004 have the goal of sending humans back to the Moon by the year 2020 in preparation for human exploration of Mars. Advanced, but cost effective, surface navigation and communication capabilities are required to support these new exploration objectives. In response to this need, a set of three Navigation/Communication architectures have been designed: Minimalist, Simple, and Performance, as well as several augmentation options. The design and refinement of these architectures was performed using numerous models and tools developed for this work. A unique feature of the analysis in this thesis was that the architectures considered combine different navigation assets (onboard, on-surface and on-orbit). The three main Navigation/Communication architectures were then evaluated and compared using several metrics, such as navigation coverage, accuracy and operability, communication metrics, and mass. Based on this analysis we recommend the initial deployment of the Simple architecture for surface exploration of the Moon and Mars with a gradual accretion of assets and possibly transition to the Performance architecture. A specific combination of onboard and vision-based sensors is recommended as the fundamental navigation equipment. In addition to this navigation study, a control-based analysis of formation flying dynamic models around the libration point L₂ of the Sun-Earth system is also presented. The objective of this research was to assess the quality of different dynamical models of the relative motion of two spacecraft in orbit around Sun-Earth L₂. (cont.) This was done using open-loop simulations to investigate the intrinsic fidelity of each model and closed-loop simulations to evaluate the impact of modeling errors on fuel costs. The conclusion from this analysis is that the more sophisticated models give appreciable better closed-loop performance, and that the difference appears to be sufficient to justify the additional effort required to implement them on-line. by Thomas Chabot. S.M. 2006-03-29T18:44:45Z 2006-03-29T18:44:45Z 2005 2005 Thesis http://hdl.handle.net/1721.1/32440 61719150 eng M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582 140 p. 6553087 bytes 6560452 bytes application/pdf application/pdf application/pdf Massachusetts Institute of Technology
collection NDLTD
language English
format Others
sources NDLTD
topic Aeronautics and Astronautics.
spellingShingle Aeronautics and Astronautics.
Chabot, Thomas
Integrated navigation architecture analysis for Moon and Mars exploration
description Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Aeronautics and Astronautics, 2005. === Includes bibliographical references (p. 127-131). === The new solar system exploration objectives announced in January 2004 have the goal of sending humans back to the Moon by the year 2020 in preparation for human exploration of Mars. Advanced, but cost effective, surface navigation and communication capabilities are required to support these new exploration objectives. In response to this need, a set of three Navigation/Communication architectures have been designed: Minimalist, Simple, and Performance, as well as several augmentation options. The design and refinement of these architectures was performed using numerous models and tools developed for this work. A unique feature of the analysis in this thesis was that the architectures considered combine different navigation assets (onboard, on-surface and on-orbit). The three main Navigation/Communication architectures were then evaluated and compared using several metrics, such as navigation coverage, accuracy and operability, communication metrics, and mass. Based on this analysis we recommend the initial deployment of the Simple architecture for surface exploration of the Moon and Mars with a gradual accretion of assets and possibly transition to the Performance architecture. A specific combination of onboard and vision-based sensors is recommended as the fundamental navigation equipment. In addition to this navigation study, a control-based analysis of formation flying dynamic models around the libration point L₂ of the Sun-Earth system is also presented. The objective of this research was to assess the quality of different dynamical models of the relative motion of two spacecraft in orbit around Sun-Earth L₂. === (cont.) This was done using open-loop simulations to investigate the intrinsic fidelity of each model and closed-loop simulations to evaluate the impact of modeling errors on fuel costs. The conclusion from this analysis is that the more sophisticated models give appreciable better closed-loop performance, and that the difference appears to be sufficient to justify the additional effort required to implement them on-line. === by Thomas Chabot. === S.M.
author2 Jonathan P. How.
author_facet Jonathan P. How.
Chabot, Thomas
author Chabot, Thomas
author_sort Chabot, Thomas
title Integrated navigation architecture analysis for Moon and Mars exploration
title_short Integrated navigation architecture analysis for Moon and Mars exploration
title_full Integrated navigation architecture analysis for Moon and Mars exploration
title_fullStr Integrated navigation architecture analysis for Moon and Mars exploration
title_full_unstemmed Integrated navigation architecture analysis for Moon and Mars exploration
title_sort integrated navigation architecture analysis for moon and mars exploration
publisher Massachusetts Institute of Technology
publishDate 2006
url http://hdl.handle.net/1721.1/32440
work_keys_str_mv AT chabotthomas integratednavigationarchitectureanalysisformoonandmarsexploration
_version_ 1719024045199982592