Energy storage in carbon nanotube super-springs

Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering, 2008. === Includes bibliographical references (p. 129-135). === A new technology is proposed for lightweight, high density energy storage. The objective of this thesis is to study the potential of storing energy i...

Full description

Bibliographic Details
Main Author: Hill, Frances Ann
Other Authors: Carol Livermore.
Format: Others
Language:English
Published: Massachusetts Institute of Technology 2009
Subjects:
Online Access:http://hdl.handle.net/1721.1/44887
id ndltd-MIT-oai-dspace.mit.edu-1721.1-44887
record_format oai_dc
spelling ndltd-MIT-oai-dspace.mit.edu-1721.1-448872019-05-02T16:17:54Z Energy storage in carbon nanotube super-springs Hill, Frances Ann Carol Livermore. Massachusetts Institute of Technology. Dept. of Mechanical Engineering. Massachusetts Institute of Technology. Dept. of Mechanical Engineering. Mechanical Engineering. Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering, 2008. Includes bibliographical references (p. 129-135). A new technology is proposed for lightweight, high density energy storage. The objective of this thesis is to study the potential of storing energy in the elastic deformation of carbon nanotubes (CNTs). Prior experimental and modeling studies of the mechanical properties of CNTs have revealed nanoscale structures with a unique combination of high stiffness, strength and flexibility. With a Young's modulus of 1 TPa and the ability to sustain reversible tensile strains of 6% [1, 2] and potentially as high as 20% [3-5], mechanical springs based on these structures are likely to surpass the current energy storage capabilities of existing steel springs and provide a viable alternative to electrochemical batteries. Models were generated to estimate the strain energy of CNTs subject to axial tension, compression, bending and torsion. The obtainable energy density is predicted to be highest under tensile loading, with an energy density in the springs themselves about 2500 times greater than the maximum energy density that can be reached in steel springs, and ten times greater than the energy density of lithium-ion batteries. Practical systems will have lower overall stored energy density once the mass and volume of the spring's support structure and any additional extraction hardware are taken into account, with a maximum achievable stored energy density predicted to be comparable to lithium-ion batteries. Due to the poor load transfer between MWCNT shells and the radial deformation of larger SWCNTs, bundles of SWCNTs with diameters of 1 nm or smaller are identified as the best structure for high-performance springs. The conceptual design of a rechargeable portable power source is developed as a tool to study the performance and feasibility of building such a device. (cont.) In this design, energy is stored in a grouping of denselypacked, aligned CNTs stretched in tension. The design includes an escapement mechanism to regulate the. energy release from the spring and a generator to convert the output work from the spring into the electrical domain. The results indicate that the performance of the power source scales well with size so there is flexibility in choosing the overall scale of the device. Achieving a high fraction of CNTs in the overall device proved to be challenging. Future work should concentrate on building and testing high-quality, densely-packed macroscale SWCNT assemblies that are expected to form the basis of super-springs for implementation into practical devices. by Frances Ann Hill. S.M. 2009-03-16T19:56:04Z 2009-03-16T19:56:04Z 2008 2008 Thesis http://hdl.handle.net/1721.1/44887 302412505 eng M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582 146 p. application/pdf Massachusetts Institute of Technology
collection NDLTD
language English
format Others
sources NDLTD
topic Mechanical Engineering.
spellingShingle Mechanical Engineering.
Hill, Frances Ann
Energy storage in carbon nanotube super-springs
description Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering, 2008. === Includes bibliographical references (p. 129-135). === A new technology is proposed for lightweight, high density energy storage. The objective of this thesis is to study the potential of storing energy in the elastic deformation of carbon nanotubes (CNTs). Prior experimental and modeling studies of the mechanical properties of CNTs have revealed nanoscale structures with a unique combination of high stiffness, strength and flexibility. With a Young's modulus of 1 TPa and the ability to sustain reversible tensile strains of 6% [1, 2] and potentially as high as 20% [3-5], mechanical springs based on these structures are likely to surpass the current energy storage capabilities of existing steel springs and provide a viable alternative to electrochemical batteries. Models were generated to estimate the strain energy of CNTs subject to axial tension, compression, bending and torsion. The obtainable energy density is predicted to be highest under tensile loading, with an energy density in the springs themselves about 2500 times greater than the maximum energy density that can be reached in steel springs, and ten times greater than the energy density of lithium-ion batteries. Practical systems will have lower overall stored energy density once the mass and volume of the spring's support structure and any additional extraction hardware are taken into account, with a maximum achievable stored energy density predicted to be comparable to lithium-ion batteries. Due to the poor load transfer between MWCNT shells and the radial deformation of larger SWCNTs, bundles of SWCNTs with diameters of 1 nm or smaller are identified as the best structure for high-performance springs. The conceptual design of a rechargeable portable power source is developed as a tool to study the performance and feasibility of building such a device. === (cont.) In this design, energy is stored in a grouping of denselypacked, aligned CNTs stretched in tension. The design includes an escapement mechanism to regulate the. energy release from the spring and a generator to convert the output work from the spring into the electrical domain. The results indicate that the performance of the power source scales well with size so there is flexibility in choosing the overall scale of the device. Achieving a high fraction of CNTs in the overall device proved to be challenging. Future work should concentrate on building and testing high-quality, densely-packed macroscale SWCNT assemblies that are expected to form the basis of super-springs for implementation into practical devices. === by Frances Ann Hill. === S.M.
author2 Carol Livermore.
author_facet Carol Livermore.
Hill, Frances Ann
author Hill, Frances Ann
author_sort Hill, Frances Ann
title Energy storage in carbon nanotube super-springs
title_short Energy storage in carbon nanotube super-springs
title_full Energy storage in carbon nanotube super-springs
title_fullStr Energy storage in carbon nanotube super-springs
title_full_unstemmed Energy storage in carbon nanotube super-springs
title_sort energy storage in carbon nanotube super-springs
publisher Massachusetts Institute of Technology
publishDate 2009
url http://hdl.handle.net/1721.1/44887
work_keys_str_mv AT hillfrancesann energystorageincarbonnanotubesupersprings
_version_ 1719037932465029120