Electronic detection of molecules on the exterior and molecular transport through the interior of single walled carbon nanotubes

Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Chemical Engineering, 2010. === Cataloged from PDF version of thesis. === Includes bibliographical references (p. 111-120). === Single walled carbon nanotubes (SWNT) are unique materials with high surface to volume ratio and all atoms...

Full description

Bibliographic Details
Main Author: Lee, Chang Young
Other Authors: Michael S. Strano.
Format: Others
Language:English
Published: Massachusetts Institute of Technology 2010
Subjects:
Online Access:http://hdl.handle.net/1721.1/57968
id ndltd-MIT-oai-dspace.mit.edu-1721.1-57968
record_format oai_dc
spelling ndltd-MIT-oai-dspace.mit.edu-1721.1-579682019-05-02T16:26:22Z Electronic detection of molecules on the exterior and molecular transport through the interior of single walled carbon nanotubes Lee, Chang Young Michael S. Strano. Massachusetts Institute of Technology. Dept. of Chemical Engineering. Massachusetts Institute of Technology. Dept. of Chemical Engineering. Chemical Engineering. Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Chemical Engineering, 2010. Cataloged from PDF version of thesis. Includes bibliographical references (p. 111-120). Single walled carbon nanotubes (SWNT) are unique materials with high surface to volume ratio and all atoms residing on the surface. Due to their tubular shape both exterior and interior of the SWNT are available for interaction with other molecules. One-dimensional electronic structure of SWNT is readily disrupted even by a single molecular binding event. Hence, one of the promising SWNT applications has been sorption-based sensors utilizing the exterior. Conversely, the interior of SWNT can potentially be used as a frictionless molecular conduit due to graphitic surface where molecular corrugation is minimized by high density of atoms. However, only few experimental results on the interior exist due to difficulties in designing a reliable platform. For the first part of this work we aim to utilize the SWNT exterior for reversible detection of nerve agents. Vast majority of the SWNT sensors exhibit irreversible sensor responses. The irreversibility is a major cause of sensor failure and also limits long term operation of the sensor. We show for the first time 1) the irreversible-to-reversible transition via simple surface amine chemistry, 2) integration with a micro-fabricated gas chromatographic (GC) column for selectivity. The platform benefits from the reversible SWNT sensor as well as from the separation capability of the GC, an analytical standard for the detection of diverse classes of organic molecules. For the second part, we demonstrate first time experimental monitoring of individual ions translocating through the interior of the single walled carbon nanotube. (cont.) By analyzing pore-blocking events caused by ions, we report for the first time 1) high ionic mobility through the SWNT interior, 2-3 orders of magnitude higher than the bulk mobility, 2) proton conductivity of ~ 10³ S/cm through the SWNT interior, 4 orders of magnitude higher than the Nafion proton exchange membrane and the highest ever reported, 3) proton/alkali ion separation factor of ~ 6x10⁷, 4) evidence of stochastic resonance in SWNT ion channels. by Chang Young Lee. Ph.D. 2010-09-01T13:35:17Z 2010-09-01T13:35:17Z 2010 2010 Thesis http://hdl.handle.net/1721.1/57968 615635692 eng M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582 120 p. application/pdf Massachusetts Institute of Technology
collection NDLTD
language English
format Others
sources NDLTD
topic Chemical Engineering.
spellingShingle Chemical Engineering.
Lee, Chang Young
Electronic detection of molecules on the exterior and molecular transport through the interior of single walled carbon nanotubes
description Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Chemical Engineering, 2010. === Cataloged from PDF version of thesis. === Includes bibliographical references (p. 111-120). === Single walled carbon nanotubes (SWNT) are unique materials with high surface to volume ratio and all atoms residing on the surface. Due to their tubular shape both exterior and interior of the SWNT are available for interaction with other molecules. One-dimensional electronic structure of SWNT is readily disrupted even by a single molecular binding event. Hence, one of the promising SWNT applications has been sorption-based sensors utilizing the exterior. Conversely, the interior of SWNT can potentially be used as a frictionless molecular conduit due to graphitic surface where molecular corrugation is minimized by high density of atoms. However, only few experimental results on the interior exist due to difficulties in designing a reliable platform. For the first part of this work we aim to utilize the SWNT exterior for reversible detection of nerve agents. Vast majority of the SWNT sensors exhibit irreversible sensor responses. The irreversibility is a major cause of sensor failure and also limits long term operation of the sensor. We show for the first time 1) the irreversible-to-reversible transition via simple surface amine chemistry, 2) integration with a micro-fabricated gas chromatographic (GC) column for selectivity. The platform benefits from the reversible SWNT sensor as well as from the separation capability of the GC, an analytical standard for the detection of diverse classes of organic molecules. For the second part, we demonstrate first time experimental monitoring of individual ions translocating through the interior of the single walled carbon nanotube. === (cont.) By analyzing pore-blocking events caused by ions, we report for the first time 1) high ionic mobility through the SWNT interior, 2-3 orders of magnitude higher than the bulk mobility, 2) proton conductivity of ~ 10³ S/cm through the SWNT interior, 4 orders of magnitude higher than the Nafion proton exchange membrane and the highest ever reported, 3) proton/alkali ion separation factor of ~ 6x10⁷, 4) evidence of stochastic resonance in SWNT ion channels. === by Chang Young Lee. === Ph.D.
author2 Michael S. Strano.
author_facet Michael S. Strano.
Lee, Chang Young
author Lee, Chang Young
author_sort Lee, Chang Young
title Electronic detection of molecules on the exterior and molecular transport through the interior of single walled carbon nanotubes
title_short Electronic detection of molecules on the exterior and molecular transport through the interior of single walled carbon nanotubes
title_full Electronic detection of molecules on the exterior and molecular transport through the interior of single walled carbon nanotubes
title_fullStr Electronic detection of molecules on the exterior and molecular transport through the interior of single walled carbon nanotubes
title_full_unstemmed Electronic detection of molecules on the exterior and molecular transport through the interior of single walled carbon nanotubes
title_sort electronic detection of molecules on the exterior and molecular transport through the interior of single walled carbon nanotubes
publisher Massachusetts Institute of Technology
publishDate 2010
url http://hdl.handle.net/1721.1/57968
work_keys_str_mv AT leechangyoung electronicdetectionofmoleculesontheexteriorandmoleculartransportthroughtheinteriorofsinglewalledcarbonnanotubes
_version_ 1719040449940815872