On-the-fly Doppler broadening using multipole representation for Monte Carlo simulations on heterogeneous clusters

Thesis: S.M., Massachusetts Institute of Technology, Department of Nuclear Science and Engineering, 2013. === Thesis: S.M., Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science, 2013. === This electronic version was submitted by the student author. The ce...

Full description

Bibliographic Details
Main Author: Xu, Sheng, S.M. Massachusetts Institute of Technology
Other Authors: Kord S. Smith and Benoit Forget.
Format: Others
Language:English
Published: Massachusetts Institute of Technology 2014
Subjects:
Online Access:http://hdl.handle.net/1721.1/86871
id ndltd-MIT-oai-dspace.mit.edu-1721.1-86871
record_format oai_dc
spelling ndltd-MIT-oai-dspace.mit.edu-1721.1-868712019-05-02T16:29:39Z On-the-fly Doppler broadening using multipole representation for Monte Carlo simulations on heterogeneous clusters Xu, Sheng, S.M. Massachusetts Institute of Technology Kord S. Smith and Benoit Forget. Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science. Massachusetts Institute of Technology. Department of Nuclear Science and Engineering. Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science. Nuclear Science and Engineering. Electrical Engineering and Computer Science. Thesis: S.M., Massachusetts Institute of Technology, Department of Nuclear Science and Engineering, 2013. Thesis: S.M., Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science, 2013. This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections. Cataloged from student-submitted PDF version of thesis. Includes bibliographical references (pages 107-109). In order to use Monte Carlo methods for reactor simulations beyond benchmark activities, the traditional way of preparing and using nuclear cross sections needs to be changed, since large datasets of cross sections at many temperatures are required to account for Doppler effects, which can impose an unacceptably high overhead in computer memory. In this thesis, a novel approach, based on the multipole representation, is proposed to reduce the memory footprint for the cross sections with little loss of efficiency. The multipole representation transforms resonance parameters into a set of poles only some of which exhibit resonant behavior. A strategy is introduced to preprocess the majority of the poles so that their contributions to the cross section over a small energy interval can be approximated with a low-order polynomial, while only a small number of poles are left to be broadened on the fly. This new approach can reduce the memory footprint of the cross sections by one to two orders over comparable techniques. In addition, it can provide accurate cross sections with an eciency comparable to current methods: depending on the machines used, the speed of the new approach ranges from being faster than the latter, to being less than 50% slower. Moreover, it has better scalability features than the latter. The signicant reduction in memory footprint makes it possible to deploy the Monte Carlo code for realistic reactor simulations on heterogeneous clusters with GPUs in order to utilize their massively parallel capability. In the thesis, a CUDA version of this new approach is implemented for a slowing down problem to examine its potential performance on GPUs. Through some extensive optimization efforts, the CUDA version can achieve around 22 times speedup compared to the corresponding serial CPU version. by Sheng Xu. S.M. 2014-05-08T13:59:57Z 2014-05-08T13:59:57Z 2013 2013 Thesis http://hdl.handle.net/1721.1/86871 878548339 eng M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582 109 pages application/pdf Massachusetts Institute of Technology
collection NDLTD
language English
format Others
sources NDLTD
topic Nuclear Science and Engineering.
Electrical Engineering and Computer Science.
spellingShingle Nuclear Science and Engineering.
Electrical Engineering and Computer Science.
Xu, Sheng, S.M. Massachusetts Institute of Technology
On-the-fly Doppler broadening using multipole representation for Monte Carlo simulations on heterogeneous clusters
description Thesis: S.M., Massachusetts Institute of Technology, Department of Nuclear Science and Engineering, 2013. === Thesis: S.M., Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science, 2013. === This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections. === Cataloged from student-submitted PDF version of thesis. === Includes bibliographical references (pages 107-109). === In order to use Monte Carlo methods for reactor simulations beyond benchmark activities, the traditional way of preparing and using nuclear cross sections needs to be changed, since large datasets of cross sections at many temperatures are required to account for Doppler effects, which can impose an unacceptably high overhead in computer memory. In this thesis, a novel approach, based on the multipole representation, is proposed to reduce the memory footprint for the cross sections with little loss of efficiency. The multipole representation transforms resonance parameters into a set of poles only some of which exhibit resonant behavior. A strategy is introduced to preprocess the majority of the poles so that their contributions to the cross section over a small energy interval can be approximated with a low-order polynomial, while only a small number of poles are left to be broadened on the fly. This new approach can reduce the memory footprint of the cross sections by one to two orders over comparable techniques. In addition, it can provide accurate cross sections with an eciency comparable to current methods: depending on the machines used, the speed of the new approach ranges from being faster than the latter, to being less than 50% slower. Moreover, it has better scalability features than the latter. The signicant reduction in memory footprint makes it possible to deploy the Monte Carlo code for realistic reactor simulations on heterogeneous clusters with GPUs in order to utilize their massively parallel capability. In the thesis, a CUDA version of this new approach is implemented for a slowing down problem to examine its potential performance on GPUs. Through some extensive optimization efforts, the CUDA version can achieve around 22 times speedup compared to the corresponding serial CPU version. === by Sheng Xu. === S.M.
author2 Kord S. Smith and Benoit Forget.
author_facet Kord S. Smith and Benoit Forget.
Xu, Sheng, S.M. Massachusetts Institute of Technology
author Xu, Sheng, S.M. Massachusetts Institute of Technology
author_sort Xu, Sheng, S.M. Massachusetts Institute of Technology
title On-the-fly Doppler broadening using multipole representation for Monte Carlo simulations on heterogeneous clusters
title_short On-the-fly Doppler broadening using multipole representation for Monte Carlo simulations on heterogeneous clusters
title_full On-the-fly Doppler broadening using multipole representation for Monte Carlo simulations on heterogeneous clusters
title_fullStr On-the-fly Doppler broadening using multipole representation for Monte Carlo simulations on heterogeneous clusters
title_full_unstemmed On-the-fly Doppler broadening using multipole representation for Monte Carlo simulations on heterogeneous clusters
title_sort on-the-fly doppler broadening using multipole representation for monte carlo simulations on heterogeneous clusters
publisher Massachusetts Institute of Technology
publishDate 2014
url http://hdl.handle.net/1721.1/86871
work_keys_str_mv AT xushengsmmassachusettsinstituteoftechnology ontheflydopplerbroadeningusingmultipolerepresentationformontecarlosimulationsonheterogeneousclusters
_version_ 1719042121851207680