The role of aqueous-phase oxidation in the formation of highly-oxidized organic aerosol

Thesis: Ph. D. in Environmental Chemistry, Massachusetts Institute of Technology, Department of Civil and Environmental Engineering, 2015. === Cataloged from PDF version of thesis. === Includes bibliographical references. === Atmospheric particulate matter (or "aerosol") is known to have i...

Full description

Bibliographic Details
Main Author: Daumit, Kelly Elizabeth
Other Authors: Jesse H. Kroll.
Format: Others
Language:English
Published: Massachusetts Institute of Technology 2015
Subjects:
Online Access:http://hdl.handle.net/1721.1/97793
id ndltd-MIT-oai-dspace.mit.edu-1721.1-97793
record_format oai_dc
spelling ndltd-MIT-oai-dspace.mit.edu-1721.1-977932019-05-02T16:19:48Z The role of aqueous-phase oxidation in the formation of highly-oxidized organic aerosol Daumit, Kelly Elizabeth Jesse H. Kroll. Massachusetts Institute of Technology. Department of Civil and Environmental Engineering. Massachusetts Institute of Technology. Department of Civil and Environmental Engineering. Civil and Environmental Engineering. Thesis: Ph. D. in Environmental Chemistry, Massachusetts Institute of Technology, Department of Civil and Environmental Engineering, 2015. Cataloged from PDF version of thesis. Includes bibliographical references. Atmospheric particulate matter (or "aerosol") is known to have important implications for climate change, air quality, and human health. Our ability to predict its formation and fate is hindered by uncertainties associated with one type in particular, organic aerosol (OA). Ambient OA measurements indicate that it can become highly oxidized in short timescales, but this is generally not reproduced well in laboratory studies or models, suggesting the importance of formation processes that are not fully understood at present. In this thesis, I focus on the potential for chemistry within aqueous aerosol to produce highly oxidized OA. I first use a retrosynthetic modeling approach to constrain the viable precursors and formation pathways of highly oxidized OA, starting with a target oxidized product and considering possible reverse reactions. Results suggest three general formation mechanisms are possible: (1) functionalization reactions that add multiple functional groups per oxidation step, (2) oligomerization of highly oxidized precursors, or (3) fast aging within the condensed phase, such as oxidation within aqueous particles. The focus of the remainder of the thesis involves experiments designed to study this third pathway. To examine the importance of the formation of highly oxidized OA in the aqueous phase (wet particles or cloud droplets), I investigate aqueous oxidation of polyols within submicron particles in an environmental chamber, allowing for significant gas-particle partitioning of reactants, intermediates, and products. Results are compared to those from analogous oxidation reactions carried out in bulk solution (the phase in which most previous studies were carried out). Both sets of experiments result in rapid oxidation, but substantially more carbon is lost from the submicron particles, likely due to differences in partitioning of early-generation products. Finally, OA is formed from the gas-phase ozonolysis of biogenic precursors in the presence of reactive aqueous particles, showing that oxidation within the condensed phase can generate highly oxidized products. The overall results of this thesis demonstrate that aqueous-phase oxidation can contribute to the rapid formation of highly oxidized OA and therefore its inclusion in atmospheric models should be considered, but that experiments to constrain such pathways must be carried out under atmospherically relevant conditions. Financial support from the National Science Foundation, under grant numbers CHE-1012809 and AGS-1056225 by Kelly Elizabeth Daumit. Ph. D. in Environmental Chemistry 2015-07-17T19:47:07Z 2015-07-17T19:47:07Z 2015 2015 Thesis http://hdl.handle.net/1721.1/97793 911921944 eng M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582 118 pages application/pdf Massachusetts Institute of Technology
collection NDLTD
language English
format Others
sources NDLTD
topic Civil and Environmental Engineering.
spellingShingle Civil and Environmental Engineering.
Daumit, Kelly Elizabeth
The role of aqueous-phase oxidation in the formation of highly-oxidized organic aerosol
description Thesis: Ph. D. in Environmental Chemistry, Massachusetts Institute of Technology, Department of Civil and Environmental Engineering, 2015. === Cataloged from PDF version of thesis. === Includes bibliographical references. === Atmospheric particulate matter (or "aerosol") is known to have important implications for climate change, air quality, and human health. Our ability to predict its formation and fate is hindered by uncertainties associated with one type in particular, organic aerosol (OA). Ambient OA measurements indicate that it can become highly oxidized in short timescales, but this is generally not reproduced well in laboratory studies or models, suggesting the importance of formation processes that are not fully understood at present. In this thesis, I focus on the potential for chemistry within aqueous aerosol to produce highly oxidized OA. I first use a retrosynthetic modeling approach to constrain the viable precursors and formation pathways of highly oxidized OA, starting with a target oxidized product and considering possible reverse reactions. Results suggest three general formation mechanisms are possible: (1) functionalization reactions that add multiple functional groups per oxidation step, (2) oligomerization of highly oxidized precursors, or (3) fast aging within the condensed phase, such as oxidation within aqueous particles. The focus of the remainder of the thesis involves experiments designed to study this third pathway. To examine the importance of the formation of highly oxidized OA in the aqueous phase (wet particles or cloud droplets), I investigate aqueous oxidation of polyols within submicron particles in an environmental chamber, allowing for significant gas-particle partitioning of reactants, intermediates, and products. Results are compared to those from analogous oxidation reactions carried out in bulk solution (the phase in which most previous studies were carried out). Both sets of experiments result in rapid oxidation, but substantially more carbon is lost from the submicron particles, likely due to differences in partitioning of early-generation products. Finally, OA is formed from the gas-phase ozonolysis of biogenic precursors in the presence of reactive aqueous particles, showing that oxidation within the condensed phase can generate highly oxidized products. The overall results of this thesis demonstrate that aqueous-phase oxidation can contribute to the rapid formation of highly oxidized OA and therefore its inclusion in atmospheric models should be considered, but that experiments to constrain such pathways must be carried out under atmospherically relevant conditions. === Financial support from the National Science Foundation, under grant numbers CHE-1012809 and AGS-1056225 === by Kelly Elizabeth Daumit. === Ph. D. in Environmental Chemistry
author2 Jesse H. Kroll.
author_facet Jesse H. Kroll.
Daumit, Kelly Elizabeth
author Daumit, Kelly Elizabeth
author_sort Daumit, Kelly Elizabeth
title The role of aqueous-phase oxidation in the formation of highly-oxidized organic aerosol
title_short The role of aqueous-phase oxidation in the formation of highly-oxidized organic aerosol
title_full The role of aqueous-phase oxidation in the formation of highly-oxidized organic aerosol
title_fullStr The role of aqueous-phase oxidation in the formation of highly-oxidized organic aerosol
title_full_unstemmed The role of aqueous-phase oxidation in the formation of highly-oxidized organic aerosol
title_sort role of aqueous-phase oxidation in the formation of highly-oxidized organic aerosol
publisher Massachusetts Institute of Technology
publishDate 2015
url http://hdl.handle.net/1721.1/97793
work_keys_str_mv AT daumitkellyelizabeth theroleofaqueousphaseoxidationintheformationofhighlyoxidizedorganicaerosol
AT daumitkellyelizabeth roleofaqueousphaseoxidationintheformationofhighlyoxidizedorganicaerosol
_version_ 1719038655515852800