Precision Calculations for Electroweak Physics at Hadron Colliders

<p> Electroweak (EW) corrections can be enhanced at high energies due to the soft or collinear radiation of virtual and real <i>W</i> and <i> Z</i> bosons that result in Sudakov-like corrections of the form &alpha;<sub> W</sub><sup>l</sup>log...

Full description

Bibliographic Details
Main Author: Zhou, Jia
Language:EN
Published: State University of New York at Buffalo 2016
Subjects:
Online Access:http://pqdtopen.proquest.com/#viewpdf?dispub=10163882
id ndltd-PROQUEST-oai-pqdtoai.proquest.com-10163882
record_format oai_dc
spelling ndltd-PROQUEST-oai-pqdtoai.proquest.com-101638822016-10-27T16:01:55Z Precision Calculations for Electroweak Physics at Hadron Colliders Zhou, Jia Physics <p> Electroweak (EW) corrections can be enhanced at high energies due to the soft or collinear radiation of virtual and real <i>W</i> and <i> Z</i> bosons that result in Sudakov-like corrections of the form &alpha;<sub> W</sub><sup>l</sup>log<sup>n</sup>(Q<sup>2</sup>/M<sub>V</sub><sup> 2</sup>), where &alpha;<sub>W</sub> = &alpha;/(4&pi;sin<sup>2</sup>&thetas;<sub> W</sub>) and <i>n</i> &le; 2l &ndash; 1. Here <i>M<sub>V</sub></i> denotes the <i>W</i> or <i>Z</i> boson mass, &thetas;<sub> w</sub> the weak mixing angle and Q<sup>2</sup> a typical energy scale of the hard process under consideration. The inclusion of EW corrections in predictions for the CERN Large Hadron Collider (LHC) is therefore especially important when searching for signals of possible new physics in distributions probing the kinematic regime Q<sup>2</sup> &raquo; M<sub>V</sub><sup> 2</sup>. Next-to-leading order (NLO) EW corrections should also be taken into account when their size (O(&alpha;)) is comparable to that of QCD corrections at next-to-next-to-leading order (NNLO) (O(&alpha;<sub>s</sub><sup>2</sup>)). To this end we have calculated and implemented in the parton-level Monte-Carlo program MCFM the NLO weak corrections to three key processes at the LHC: the Neutral-Current Drell-Yan process, top-quark pair production and di-jet production. This enables a study of their effects on LHC observables combined with the already available QCD corrections at NLO and NNLO. We provide both the full NLO weak corrections and their Sudakov approximation, since the latter is often used for a fast evaluation of weak effects at high energies and can be extended to higher orders. With both the exact and approximate results at hand, the validity of the Sudakov approximation can be readily quantified. In the case of top-quark pair production at the LHC we also calculated the NLO QED corrections.</p> State University of New York at Buffalo 2016-10-26 00:00:00.0 thesis http://pqdtopen.proquest.com/#viewpdf?dispub=10163882 EN
collection NDLTD
language EN
sources NDLTD
topic Physics
spellingShingle Physics
Zhou, Jia
Precision Calculations for Electroweak Physics at Hadron Colliders
description <p> Electroweak (EW) corrections can be enhanced at high energies due to the soft or collinear radiation of virtual and real <i>W</i> and <i> Z</i> bosons that result in Sudakov-like corrections of the form &alpha;<sub> W</sub><sup>l</sup>log<sup>n</sup>(Q<sup>2</sup>/M<sub>V</sub><sup> 2</sup>), where &alpha;<sub>W</sub> = &alpha;/(4&pi;sin<sup>2</sup>&thetas;<sub> W</sub>) and <i>n</i> &le; 2l &ndash; 1. Here <i>M<sub>V</sub></i> denotes the <i>W</i> or <i>Z</i> boson mass, &thetas;<sub> w</sub> the weak mixing angle and Q<sup>2</sup> a typical energy scale of the hard process under consideration. The inclusion of EW corrections in predictions for the CERN Large Hadron Collider (LHC) is therefore especially important when searching for signals of possible new physics in distributions probing the kinematic regime Q<sup>2</sup> &raquo; M<sub>V</sub><sup> 2</sup>. Next-to-leading order (NLO) EW corrections should also be taken into account when their size (O(&alpha;)) is comparable to that of QCD corrections at next-to-next-to-leading order (NNLO) (O(&alpha;<sub>s</sub><sup>2</sup>)). To this end we have calculated and implemented in the parton-level Monte-Carlo program MCFM the NLO weak corrections to three key processes at the LHC: the Neutral-Current Drell-Yan process, top-quark pair production and di-jet production. This enables a study of their effects on LHC observables combined with the already available QCD corrections at NLO and NNLO. We provide both the full NLO weak corrections and their Sudakov approximation, since the latter is often used for a fast evaluation of weak effects at high energies and can be extended to higher orders. With both the exact and approximate results at hand, the validity of the Sudakov approximation can be readily quantified. In the case of top-quark pair production at the LHC we also calculated the NLO QED corrections.</p>
author Zhou, Jia
author_facet Zhou, Jia
author_sort Zhou, Jia
title Precision Calculations for Electroweak Physics at Hadron Colliders
title_short Precision Calculations for Electroweak Physics at Hadron Colliders
title_full Precision Calculations for Electroweak Physics at Hadron Colliders
title_fullStr Precision Calculations for Electroweak Physics at Hadron Colliders
title_full_unstemmed Precision Calculations for Electroweak Physics at Hadron Colliders
title_sort precision calculations for electroweak physics at hadron colliders
publisher State University of New York at Buffalo
publishDate 2016
url http://pqdtopen.proquest.com/#viewpdf?dispub=10163882
work_keys_str_mv AT zhoujia precisioncalculationsforelectroweakphysicsathadroncolliders
_version_ 1718390300565569536