Defining a Model of Classical Activation in Microglia

Microglia, the resident immune cells of the central nervous system, can become activated following injury, disease, or infection. In vitro, they can be activated by stimuli, which determine the inflammatory phenotype they will develop. In this thesis, stimulating microglia with tumor necrosis factor...

Full description

Bibliographic Details
Main Author: Kena-Cohen, Veronique
Other Authors: Schlichter, Lyanne C.
Format: Others
Language:en_ca
Published: 2008
Subjects:
Online Access:http://hdl.handle.net/1807/17186
Description
Summary:Microglia, the resident immune cells of the central nervous system, can become activated following injury, disease, or infection. In vitro, they can be activated by stimuli, which determine the inflammatory phenotype they will develop. In this thesis, stimulating microglia with tumor necrosis factor- and interferon- resulted in classical activation, characterized by proliferation, increased transcription of complement receptor 3 and major histocompatibility class II molecules, and elevated production and transcription of interleukin-1 and nitric oxide. Stimulation with TNF and IFN also changed the intensity of phosphorylated (activated) cyclic adenosine monophosphate response element binding protein immunoreactivity in microglia. Specifically, cells differentiated into populations with high or low pCREB intensity. This was the first example of such a response in microglia and was representative of what occurred in vivo, after ICH. Thus, the characterization of this model will be useful for future studies of this and other intracellular pathways of classically activated microglia.