Dynamic Stability of the String-Rotor Coupling System
碩士 === 中原大學 === 機械工程研究所 === 83 === This thesis studies a string/rotor coupling system. By using Hamilton's principle, we can derive the equations of motion of the system. Then the partial deferential equations can be simpli...
Main Authors: | , |
---|---|
Other Authors: | |
Format: | Others |
Language: | zh-TW |
Published: |
1995
|
Online Access: | http://ndltd.ncl.edu.tw/handle/25146768600227401429 |
id |
ndltd-TW-083CYCU0489018 |
---|---|
record_format |
oai_dc |
spelling |
ndltd-TW-083CYCU04890182016-02-08T04:06:38Z http://ndltd.ncl.edu.tw/handle/25146768600227401429 Dynamic Stability of the String-Rotor Coupling System 弦╱轉子耦合系統動態穩定性分析 Shieh ,Jen Song 謝禎松 碩士 中原大學 機械工程研究所 83 This thesis studies a string/rotor coupling system. By using Hamilton's principle, we can derive the equations of motion of the system. Then the partial deferential equations can be simplified as ordinary differential equations by means of Galerkin method. As assumed the initial tension is characterized as a small perturbation superimposed upon a steady-state value, the system will be a weakly nonautonomous system. Thus the perturbation method can be used to obtain periodic solution for the system. Herein multiple- scale method is used to obtaint the domain of instability as a function of the perturbation frequency. The results is used to estimate the location and extendof resonance instability due to the coupling of internal and paramtric resonance. Fung, Rong-Fong 馮榮豐 1995 學位論文 ; thesis 49 zh-TW |
collection |
NDLTD |
language |
zh-TW |
format |
Others
|
sources |
NDLTD |
description |
碩士 === 中原大學 === 機械工程研究所 === 83 === This thesis studies a string/rotor coupling system. By
using Hamilton's principle, we can derive the equations
of motion of the system. Then the partial deferential equations
can be simplified as ordinary differential equations by
means of Galerkin method. As assumed the initial tension is
characterized as a small perturbation superimposed upon a
steady-state value, the system will be a weakly
nonautonomous system. Thus the perturbation method can be used
to obtain periodic solution for the system. Herein multiple-
scale method is used to obtaint the domain of instability
as a function of the perturbation frequency. The results
is used to estimate the location and extendof resonance
instability due to the coupling of internal and paramtric
resonance.
|
author2 |
Fung, Rong-Fong |
author_facet |
Fung, Rong-Fong Shieh ,Jen Song 謝禎松 |
author |
Shieh ,Jen Song 謝禎松 |
spellingShingle |
Shieh ,Jen Song 謝禎松 Dynamic Stability of the String-Rotor Coupling System |
author_sort |
Shieh ,Jen Song |
title |
Dynamic Stability of the String-Rotor Coupling System |
title_short |
Dynamic Stability of the String-Rotor Coupling System |
title_full |
Dynamic Stability of the String-Rotor Coupling System |
title_fullStr |
Dynamic Stability of the String-Rotor Coupling System |
title_full_unstemmed |
Dynamic Stability of the String-Rotor Coupling System |
title_sort |
dynamic stability of the string-rotor coupling system |
publishDate |
1995 |
url |
http://ndltd.ncl.edu.tw/handle/25146768600227401429 |
work_keys_str_mv |
AT shiehjensong dynamicstabilityofthestringrotorcouplingsystem AT xièzhēnsōng dynamicstabilityofthestringrotorcouplingsystem AT shiehjensong xiánzhuǎnziǒuhéxìtǒngdòngtàiwěndìngxìngfēnxī AT xièzhēnsōng xiánzhuǎnziǒuhéxìtǒngdòngtàiwěndìngxìngfēnxī |
_version_ |
1718183409922080768 |