A Physically-Based Model of Poly-Silicon Thin Film Transistors for SPICE

碩士 === 國立交通大學 === 電子研究所 === 84 === Recently, poly-silicon Thin Film Transistors(poly-Si TFT's) have been extensively studied because of their important applications in flat-panel display and three-dimentional integration. Typically...

Full description

Bibliographic Details
Main Authors: Cheng, Chi-Ting, 鄭基廷
Other Authors: Steve S. Chung
Format: Others
Language:zh-TW
Published: 1996
Online Access:http://ndltd.ncl.edu.tw/handle/42502380050195871452
Description
Summary:碩士 === 國立交通大學 === 電子研究所 === 84 === Recently, poly-silicon Thin Film Transistors(poly-Si TFT's) have been extensively studied because of their important applications in flat-panel display and three-dimentional integration. Typically, TFT operates with a floating substrate and the operation bias is about 12V. Moreover, the characteristics of aTFT cannot be accurately modeled by the common bulk MOSFET model in SPICE. As poly-Si TFTs technology matures and more complex analog and digital circuits become feasible, the lack of an accurate circuit model will be the major factor limiting circuit integration. It is, therefore, essential to establish a precise poly-Si TFTs circuit model, suitable for use in circuit simulations. This work attempts to develop a physically-based analytical current- voltage model and an intrinsic capacitance-voltage model of ply- Si TFTs for circuit simulation. First, we have developed a set of programs including I-V and C-V models and parameter extraction methods. The model parameters are extracted from the experimental data and then substituted back into the developed models. The accuracy of these models are verified as compared with experimental data. Then, both models were successfully implenmented in SPICE. The experiment data used here are measured from a LCD wafer with p-substrate and top-gate structure. The gate oxide thickness is 60nm. The channel length ranges from 5um to 10um. these device models are finally implemented in the SPICE circuit simulator(version 2G.6)to predict and analyze the circuit performance of poly-Si TFTs such as ring oscillator, amplifier, etc. Device reliability issues are also important in the poly-Si TFTs due to theimperfection properties in the polysilicon crystals. It exhibits many defects throughout the material, espically at the grain-boundary. The general method improving device performance is to post-process the TFT's with hydrogen plasma passivation. The method improves device performance but is unstable under long term electrical stress. By using bias and temperature stress at the poly-Si TFTs, it is possible to explore mechanisms of the unstable phenomena such as break of hydrogn bounds, carrier traping, etc. In the final part of the work, we try to find the reasons of device degradation by realizating some stress experiments.