on a differential identity in prime rings

碩士 === 東吳大學 === 數學系 === 85 === Let R be a prime ring with center Z and U a noncentralLie ideal of R. Suppose that d is a derivation of R anda an element of R. If ad(u)^n belong to Z for all u in U,where n is a fixed positive integer then e...

Full description

Bibliographic Details
Main Authors: Kuo, Chang-Yu, 郭張裕
Other Authors: Tsong-Cherng Lee
Format: Others
Language:zh-TW
Published: 1996
Online Access:http://ndltd.ncl.edu.tw/handle/99036478584563100332
id ndltd-TW-085SCU00479009
record_format oai_dc
spelling ndltd-TW-085SCU004790092016-07-01T04:15:55Z http://ndltd.ncl.edu.tw/handle/99036478584563100332 on a differential identity in prime rings 質環上的導算等式 Kuo, Chang-Yu 郭張裕 碩士 東吳大學 數學系 85 Let R be a prime ring with center Z and U a noncentralLie ideal of R. Suppose that d is a derivation of R anda an element of R. If ad(u)^n belong to Z for all u in U,where n is a fixed positive integer then either a=o or d=0, unless R satisfies S_4. Tsong-Cherng Lee 李聰成 1996 學位論文 ; thesis 17 zh-TW
collection NDLTD
language zh-TW
format Others
sources NDLTD
description 碩士 === 東吳大學 === 數學系 === 85 === Let R be a prime ring with center Z and U a noncentralLie ideal of R. Suppose that d is a derivation of R anda an element of R. If ad(u)^n belong to Z for all u in U,where n is a fixed positive integer then either a=o or d=0, unless R satisfies S_4.
author2 Tsong-Cherng Lee
author_facet Tsong-Cherng Lee
Kuo, Chang-Yu
郭張裕
author Kuo, Chang-Yu
郭張裕
spellingShingle Kuo, Chang-Yu
郭張裕
on a differential identity in prime rings
author_sort Kuo, Chang-Yu
title on a differential identity in prime rings
title_short on a differential identity in prime rings
title_full on a differential identity in prime rings
title_fullStr on a differential identity in prime rings
title_full_unstemmed on a differential identity in prime rings
title_sort on a differential identity in prime rings
publishDate 1996
url http://ndltd.ncl.edu.tw/handle/99036478584563100332
work_keys_str_mv AT kuochangyu onadifferentialidentityinprimerings
AT guōzhāngyù onadifferentialidentityinprimerings
AT kuochangyu zhìhuánshàngdedǎosuànděngshì
AT guōzhāngyù zhìhuánshàngdedǎosuànděngshì
_version_ 1718330086972719104