Skewness- and Kurtosis-adjusted American Option Pricing Model
碩士 === 國立中正大學 === 財務金融學系 === 86 === The traditional American pricing model frequently misprices deep-in-the-money and deep-out-of-the-money options. Practitioners popularly refer to these strike price biase as volatility smiles. In this pa...
Main Authors: | , |
---|---|
Other Authors: | |
Format: | Others |
Language: | zh-TW |
Published: |
1998
|
Online Access: | http://ndltd.ncl.edu.tw/handle/72832617355691413308 |
id |
ndltd-TW-086CCU00304005 |
---|---|
record_format |
oai_dc |
spelling |
ndltd-TW-086CCU003040052016-01-22T04:17:30Z http://ndltd.ncl.edu.tw/handle/72832617355691413308 Skewness- and Kurtosis-adjusted American Option Pricing Model 調整峰度偏度的美式選擇權定價模型 Hsing, Ta-Jen 邢大任 碩士 國立中正大學 財務金融學系 86 The traditional American pricing model frequently misprices deep-in-the-money and deep-out-of-the-money options. Practitioners popularly refer to these strike price biase as volatility smiles. In this paper we exam in a methodto extend the Barone-Adesi and Whaley (1987) American option pricing modelto account for biases induced by nonnormal skewness and kurtosis in stockreturn distributions. The method adapts a Gram- Charlier series expansion ofthe normal density function to provide skewness and kurtosis adjustment termsfor the Barone- Adesi and Whaley's(1987) formula. Using this method, we estimateoption implied coefficients of skewness and kurtosis in S&P 500 index futuresreturns. We find significant nonnormal skewness and kurtosis implied by option price. An-Sing Chen 陳安行 1998 學位論文 ; thesis 37 zh-TW |
collection |
NDLTD |
language |
zh-TW |
format |
Others
|
sources |
NDLTD |
description |
碩士 === 國立中正大學 === 財務金融學系 === 86 === The traditional American pricing model frequently misprices
deep-in-the-money and deep-out-of-the-money options.
Practitioners popularly refer to these strike price biase as
volatility smiles. In this paper we exam in a methodto extend
the Barone-Adesi and Whaley (1987) American option pricing
modelto account for biases induced by nonnormal skewness and
kurtosis in stockreturn distributions. The method adapts a Gram-
Charlier series expansion ofthe normal density function to
provide skewness and kurtosis adjustment termsfor the Barone-
Adesi and Whaley's(1987) formula. Using this method, we
estimateoption implied coefficients of skewness and kurtosis in
S&P 500 index futuresreturns. We find significant nonnormal
skewness and kurtosis implied by option price.
|
author2 |
An-Sing Chen |
author_facet |
An-Sing Chen Hsing, Ta-Jen 邢大任 |
author |
Hsing, Ta-Jen 邢大任 |
spellingShingle |
Hsing, Ta-Jen 邢大任 Skewness- and Kurtosis-adjusted American Option Pricing Model |
author_sort |
Hsing, Ta-Jen |
title |
Skewness- and Kurtosis-adjusted American Option Pricing Model |
title_short |
Skewness- and Kurtosis-adjusted American Option Pricing Model |
title_full |
Skewness- and Kurtosis-adjusted American Option Pricing Model |
title_fullStr |
Skewness- and Kurtosis-adjusted American Option Pricing Model |
title_full_unstemmed |
Skewness- and Kurtosis-adjusted American Option Pricing Model |
title_sort |
skewness- and kurtosis-adjusted american option pricing model |
publishDate |
1998 |
url |
http://ndltd.ncl.edu.tw/handle/72832617355691413308 |
work_keys_str_mv |
AT hsingtajen skewnessandkurtosisadjustedamericanoptionpricingmodel AT xíngdàrèn skewnessandkurtosisadjustedamericanoptionpricingmodel AT hsingtajen diàozhěngfēngdùpiāndùdeměishìxuǎnzéquándìngjiàmóxíng AT xíngdàrèn diàozhěngfēngdùpiāndùdeměishìxuǎnzéquándìngjiàmóxíng |
_version_ |
1718161878758195200 |