Skewness- and Kurtosis-adjusted American Option Pricing Model

碩士 === 國立中正大學 === 財務金融學系 === 86 === The traditional American pricing model frequently misprices deep-in-the-money and deep-out-of-the-money options. Practitioners popularly refer to these strike price biase as volatility smiles. In this pa...

Full description

Bibliographic Details
Main Authors: Hsing, Ta-Jen, 邢大任
Other Authors: An-Sing Chen
Format: Others
Language:zh-TW
Published: 1998
Online Access:http://ndltd.ncl.edu.tw/handle/72832617355691413308
id ndltd-TW-086CCU00304005
record_format oai_dc
spelling ndltd-TW-086CCU003040052016-01-22T04:17:30Z http://ndltd.ncl.edu.tw/handle/72832617355691413308 Skewness- and Kurtosis-adjusted American Option Pricing Model 調整峰度偏度的美式選擇權定價模型 Hsing, Ta-Jen 邢大任 碩士 國立中正大學 財務金融學系 86 The traditional American pricing model frequently misprices deep-in-the-money and deep-out-of-the-money options. Practitioners popularly refer to these strike price biase as volatility smiles. In this paper we exam in a methodto extend the Barone-Adesi and Whaley (1987) American option pricing modelto account for biases induced by nonnormal skewness and kurtosis in stockreturn distributions. The method adapts a Gram- Charlier series expansion ofthe normal density function to provide skewness and kurtosis adjustment termsfor the Barone- Adesi and Whaley's(1987) formula. Using this method, we estimateoption implied coefficients of skewness and kurtosis in S&P 500 index futuresreturns. We find significant nonnormal skewness and kurtosis implied by option price. An-Sing Chen 陳安行 1998 學位論文 ; thesis 37 zh-TW
collection NDLTD
language zh-TW
format Others
sources NDLTD
description 碩士 === 國立中正大學 === 財務金融學系 === 86 === The traditional American pricing model frequently misprices deep-in-the-money and deep-out-of-the-money options. Practitioners popularly refer to these strike price biase as volatility smiles. In this paper we exam in a methodto extend the Barone-Adesi and Whaley (1987) American option pricing modelto account for biases induced by nonnormal skewness and kurtosis in stockreturn distributions. The method adapts a Gram- Charlier series expansion ofthe normal density function to provide skewness and kurtosis adjustment termsfor the Barone- Adesi and Whaley's(1987) formula. Using this method, we estimateoption implied coefficients of skewness and kurtosis in S&P 500 index futuresreturns. We find significant nonnormal skewness and kurtosis implied by option price.
author2 An-Sing Chen
author_facet An-Sing Chen
Hsing, Ta-Jen
邢大任
author Hsing, Ta-Jen
邢大任
spellingShingle Hsing, Ta-Jen
邢大任
Skewness- and Kurtosis-adjusted American Option Pricing Model
author_sort Hsing, Ta-Jen
title Skewness- and Kurtosis-adjusted American Option Pricing Model
title_short Skewness- and Kurtosis-adjusted American Option Pricing Model
title_full Skewness- and Kurtosis-adjusted American Option Pricing Model
title_fullStr Skewness- and Kurtosis-adjusted American Option Pricing Model
title_full_unstemmed Skewness- and Kurtosis-adjusted American Option Pricing Model
title_sort skewness- and kurtosis-adjusted american option pricing model
publishDate 1998
url http://ndltd.ncl.edu.tw/handle/72832617355691413308
work_keys_str_mv AT hsingtajen skewnessandkurtosisadjustedamericanoptionpricingmodel
AT xíngdàrèn skewnessandkurtosisadjustedamericanoptionpricingmodel
AT hsingtajen diàozhěngfēngdùpiāndùdeměishìxuǎnzéquándìngjiàmóxíng
AT xíngdàrèn diàozhěngfēngdùpiāndùdeměishìxuǎnzéquándìngjiàmóxíng
_version_ 1718161878758195200