DIFFERENTIAL IDENTITIES OF ONE-SIDED IDEALS IN PRIME RINGS

博士 === 國立臺灣大學 === 數學系研究所 === 86 === Let $R$ be a prime ring with center Z, extended centroid $C$, $Q$ its two-side dMartindale quotient ring, $\rho$ a nonzero right ideal of $R$ and $\delta , d $two nonzero derivations of $R$. In the first two sections we study the str...

Full description

Bibliographic Details
Main Authors: CHANG, CHI-MING, 張志銘
Other Authors: LEE TSIU-KWEN
Format: Others
Language:en_US
Published: 1998
Online Access:http://ndltd.ncl.edu.tw/handle/64035002277402658754
id ndltd-TW-086NTU00479007
record_format oai_dc
spelling ndltd-TW-086NTU004790072016-06-29T04:13:50Z http://ndltd.ncl.edu.tw/handle/64035002277402658754 DIFFERENTIAL IDENTITIES OF ONE-SIDED IDEALS IN PRIME RINGS 質環上之單邊理想的導算等式 CHANG, CHI-MING 張志銘 博士 國立臺灣大學 數學系研究所 86 Let $R$ be a prime ring with center Z, extended centroid $C$, $Q$ its two-side dMartindale quotient ring, $\rho$ a nonzero right ideal of $R$ and $\delta , d $two nonzero derivations of $R$. In the first two sections we study the struc tures of $R,\delta$ and $d$ when $\delta d(x)$ is central for all$x\in [\rho, rho]$. In $\S$ 3 we extend these results to its polynomial form.More precisely , we prove the main theorem: Let $f(X_1,\ldots,X_t)$ be anonzero polynomial ov er $C$. Suppose that $\delta d(f(x_1,\ldots,x_t))\in c$for all $x_1,\ldots,x_t \in\rho$. Then either char $R=2,\delta =\alpha d$ forsome $\alpha \in C$ and $ d^2=0$, or there exist $p,q\in Q$ such that $\delta=$ ad$(q)$, $d=$ ad$(p)$ wi th $p\rho=0=q\rho$ and $pq=0$, or $\rho C=eRC$ for some idempotent $e$ in the socle of $RC$ such that either$f(X_1,\ldots,X_t)$ is central-valued on $eRCe$ or char $R=2$ anddim$_CeRCe=4$.In $\$ 4$ we study the problem concerning annih ilators of power values ofderivations in prime ring. The follwing main theorem establishes a unifiedversion of several earlier results in the literature:Sup pose that $ad([x,y])^n\in Z (d([x,y])^na\in Z$) for all $x,y\in\rho$, where$a in R$ and $n$ is a fixed positive integer. If $[\rho,\rho]\rho]\ne0$ anddim$_C RC > 4$, then either $ad9\rho)=0$ ($a=0$ resp.) or $d=$ ad$(p)$ forsome $p\in Q$ such that $p\rho=0$. LEE TSIU-KWEN 李秋坤 --- 1998 學位論文 ; thesis 56 en_US
collection NDLTD
language en_US
format Others
sources NDLTD
description 博士 === 國立臺灣大學 === 數學系研究所 === 86 === Let $R$ be a prime ring with center Z, extended centroid $C$, $Q$ its two-side dMartindale quotient ring, $\rho$ a nonzero right ideal of $R$ and $\delta , d $two nonzero derivations of $R$. In the first two sections we study the struc tures of $R,\delta$ and $d$ when $\delta d(x)$ is central for all$x\in [\rho, rho]$. In $\S$ 3 we extend these results to its polynomial form.More precisely , we prove the main theorem: Let $f(X_1,\ldots,X_t)$ be anonzero polynomial ov er $C$. Suppose that $\delta d(f(x_1,\ldots,x_t))\in c$for all $x_1,\ldots,x_t \in\rho$. Then either char $R=2,\delta =\alpha d$ forsome $\alpha \in C$ and $ d^2=0$, or there exist $p,q\in Q$ such that $\delta=$ ad$(q)$, $d=$ ad$(p)$ wi th $p\rho=0=q\rho$ and $pq=0$, or $\rho C=eRC$ for some idempotent $e$ in the socle of $RC$ such that either$f(X_1,\ldots,X_t)$ is central-valued on $eRCe$ or char $R=2$ anddim$_CeRCe=4$.In $\$ 4$ we study the problem concerning annih ilators of power values ofderivations in prime ring. The follwing main theorem establishes a unifiedversion of several earlier results in the literature:Sup pose that $ad([x,y])^n\in Z (d([x,y])^na\in Z$) for all $x,y\in\rho$, where$a in R$ and $n$ is a fixed positive integer. If $[\rho,\rho]\rho]\ne0$ anddim$_C RC > 4$, then either $ad9\rho)=0$ ($a=0$ resp.) or $d=$ ad$(p)$ forsome $p\in Q$ such that $p\rho=0$.
author2 LEE TSIU-KWEN
author_facet LEE TSIU-KWEN
CHANG, CHI-MING
張志銘
author CHANG, CHI-MING
張志銘
spellingShingle CHANG, CHI-MING
張志銘
DIFFERENTIAL IDENTITIES OF ONE-SIDED IDEALS IN PRIME RINGS
author_sort CHANG, CHI-MING
title DIFFERENTIAL IDENTITIES OF ONE-SIDED IDEALS IN PRIME RINGS
title_short DIFFERENTIAL IDENTITIES OF ONE-SIDED IDEALS IN PRIME RINGS
title_full DIFFERENTIAL IDENTITIES OF ONE-SIDED IDEALS IN PRIME RINGS
title_fullStr DIFFERENTIAL IDENTITIES OF ONE-SIDED IDEALS IN PRIME RINGS
title_full_unstemmed DIFFERENTIAL IDENTITIES OF ONE-SIDED IDEALS IN PRIME RINGS
title_sort differential identities of one-sided ideals in prime rings
publishDate 1998
url http://ndltd.ncl.edu.tw/handle/64035002277402658754
work_keys_str_mv AT changchiming differentialidentitiesofonesidedidealsinprimerings
AT zhāngzhìmíng differentialidentitiesofonesidedidealsinprimerings
AT changchiming zhìhuánshàngzhīdānbiānlǐxiǎngdedǎosuànděngshì
AT zhāngzhìmíng zhìhuánshàngzhīdānbiānlǐxiǎngdedǎosuànděngshì
_version_ 1718327845553438720