DIFFERENTIAL IDENTITIES OF ONE-SIDED IDEALS IN PRIME RINGS
博士 === 國立臺灣大學 === 數學系研究所 === 86 === Let $R$ be a prime ring with center Z, extended centroid $C$, $Q$ its two-side dMartindale quotient ring, $\rho$ a nonzero right ideal of $R$ and $\delta , d $two nonzero derivations of $R$. In the first two sections we study the str...
Main Authors: | , |
---|---|
Other Authors: | |
Format: | Others |
Language: | en_US |
Published: |
1998
|
Online Access: | http://ndltd.ncl.edu.tw/handle/64035002277402658754 |
id |
ndltd-TW-086NTU00479007 |
---|---|
record_format |
oai_dc |
spelling |
ndltd-TW-086NTU004790072016-06-29T04:13:50Z http://ndltd.ncl.edu.tw/handle/64035002277402658754 DIFFERENTIAL IDENTITIES OF ONE-SIDED IDEALS IN PRIME RINGS 質環上之單邊理想的導算等式 CHANG, CHI-MING 張志銘 博士 國立臺灣大學 數學系研究所 86 Let $R$ be a prime ring with center Z, extended centroid $C$, $Q$ its two-side dMartindale quotient ring, $\rho$ a nonzero right ideal of $R$ and $\delta , d $two nonzero derivations of $R$. In the first two sections we study the struc tures of $R,\delta$ and $d$ when $\delta d(x)$ is central for all$x\in [\rho, rho]$. In $\S$ 3 we extend these results to its polynomial form.More precisely , we prove the main theorem: Let $f(X_1,\ldots,X_t)$ be anonzero polynomial ov er $C$. Suppose that $\delta d(f(x_1,\ldots,x_t))\in c$for all $x_1,\ldots,x_t \in\rho$. Then either char $R=2,\delta =\alpha d$ forsome $\alpha \in C$ and $ d^2=0$, or there exist $p,q\in Q$ such that $\delta=$ ad$(q)$, $d=$ ad$(p)$ wi th $p\rho=0=q\rho$ and $pq=0$, or $\rho C=eRC$ for some idempotent $e$ in the socle of $RC$ such that either$f(X_1,\ldots,X_t)$ is central-valued on $eRCe$ or char $R=2$ anddim$_CeRCe=4$.In $\$ 4$ we study the problem concerning annih ilators of power values ofderivations in prime ring. The follwing main theorem establishes a unifiedversion of several earlier results in the literature:Sup pose that $ad([x,y])^n\in Z (d([x,y])^na\in Z$) for all $x,y\in\rho$, where$a in R$ and $n$ is a fixed positive integer. If $[\rho,\rho]\rho]\ne0$ anddim$_C RC > 4$, then either $ad9\rho)=0$ ($a=0$ resp.) or $d=$ ad$(p)$ forsome $p\in Q$ such that $p\rho=0$. LEE TSIU-KWEN 李秋坤 --- 1998 學位論文 ; thesis 56 en_US |
collection |
NDLTD |
language |
en_US |
format |
Others
|
sources |
NDLTD |
description |
博士 === 國立臺灣大學 === 數學系研究所 === 86 === Let $R$ be a prime ring with center Z, extended centroid $C$, $Q$ its two-side
dMartindale quotient ring, $\rho$ a nonzero right ideal of $R$ and $\delta , d
$two nonzero derivations of $R$. In the first two sections we study the struc
tures of $R,\delta$ and $d$ when $\delta d(x)$ is central for all$x\in [\rho, rho]$. In $\S$ 3 we extend these results to its polynomial form.More precisely
, we prove the main theorem: Let $f(X_1,\ldots,X_t)$ be anonzero polynomial ov
er $C$. Suppose that $\delta d(f(x_1,\ldots,x_t))\in c$for all $x_1,\ldots,x_t
\in\rho$. Then either char $R=2,\delta =\alpha d$ forsome $\alpha \in C$ and $
d^2=0$, or there exist $p,q\in Q$ such that $\delta=$ ad$(q)$, $d=$ ad$(p)$ wi
th $p\rho=0=q\rho$ and $pq=0$, or $\rho C=eRC$ for some idempotent $e$ in the
socle of $RC$ such that either$f(X_1,\ldots,X_t)$ is central-valued on $eRCe$
or char $R=2$ anddim$_CeRCe=4$.In $\$ 4$ we study the problem concerning annih
ilators of power values ofderivations in prime ring. The follwing main theorem
establishes a unifiedversion of several earlier results in the literature:Sup
pose that $ad([x,y])^n\in Z (d([x,y])^na\in Z$) for all $x,y\in\rho$, where$a in R$ and $n$ is a fixed positive integer. If $[\rho,\rho]\rho]\ne0$ anddim$_C
RC > 4$, then either $ad9\rho)=0$ ($a=0$ resp.) or $d=$ ad$(p)$ forsome $p\in
Q$ such that $p\rho=0$.
|
author2 |
LEE TSIU-KWEN |
author_facet |
LEE TSIU-KWEN CHANG, CHI-MING 張志銘 |
author |
CHANG, CHI-MING 張志銘 |
spellingShingle |
CHANG, CHI-MING 張志銘 DIFFERENTIAL IDENTITIES OF ONE-SIDED IDEALS IN PRIME RINGS |
author_sort |
CHANG, CHI-MING |
title |
DIFFERENTIAL IDENTITIES OF ONE-SIDED IDEALS IN PRIME RINGS |
title_short |
DIFFERENTIAL IDENTITIES OF ONE-SIDED IDEALS IN PRIME RINGS |
title_full |
DIFFERENTIAL IDENTITIES OF ONE-SIDED IDEALS IN PRIME RINGS |
title_fullStr |
DIFFERENTIAL IDENTITIES OF ONE-SIDED IDEALS IN PRIME RINGS |
title_full_unstemmed |
DIFFERENTIAL IDENTITIES OF ONE-SIDED IDEALS IN PRIME RINGS |
title_sort |
differential identities of one-sided ideals in prime rings |
publishDate |
1998 |
url |
http://ndltd.ncl.edu.tw/handle/64035002277402658754 |
work_keys_str_mv |
AT changchiming differentialidentitiesofonesidedidealsinprimerings AT zhāngzhìmíng differentialidentitiesofonesidedidealsinprimerings AT changchiming zhìhuánshàngzhīdānbiānlǐxiǎngdedǎosuànděngshì AT zhāngzhìmíng zhìhuánshàngzhīdānbiānlǐxiǎngdedǎosuànděngshì |
_version_ |
1718327845553438720 |