Electric Influence of Gated Structure and Diamond Emitter Morphologies for triode-type Field Emission Arrays

碩士 === 國立交通大學 === 材料科學與工程系 === 87 === Field emission display (FED) is evolving as one of the promising techniques for the future generation of flat panel displays (FPD). Such FED applications are arranged from several "pixels", which are associated with several field emission cells (FECs),...

Full description

Bibliographic Details
Main Authors: Hui-Chen Shieh, 謝慧珍
Other Authors: Chia-Fu Chen
Format: Others
Language:en_US
Published: 1999
Online Access:http://ndltd.ncl.edu.tw/handle/39993863948221377894
Description
Summary:碩士 === 國立交通大學 === 材料科學與工程系 === 87 === Field emission display (FED) is evolving as one of the promising techniques for the future generation of flat panel displays (FPD). Such FED applications are arranged from several "pixels", which are associated with several field emission cells (FECs), in the array order. The characteristics that affect the power of field emitter arrays include the shape and work function of emission materials, the distance between tip and gate, and the vacuum environmental condition. Diamond films (111) plane possess negative electron affinity (NEA) characteristics, in addition to the useful properties such as high electron mobility, high thermal conductivity, and chemical inertness. Therefore, this material is considered to be highly promising for applications in electron field emission devices and the related emission properties have been widely investigated. In this thesis, we successfully demonstrate the feasibility of the proposed scheme that a new process of gate structure MIS diode by using IC technology process, then deposition the diamond film in this MIS diode form a column-like diamond with gated FEAs by using bias assisted microwave plasma chemical vapor deposition (BAMPCVD) system. Moreover, we compare the gate structure and diamond tip morphology for the influence of field emission characterization, for instance the two different structure and morphology diamond FEAs. One is the column-like diamond FEAs with a 4 μm gate aperture and shallow depth of silicon substrate to gate (about 400nm), the other is the cone-shape diamond FEAs with a 8 μm gate aperture and deep depth of silicon substrate to gate (about 700nm). According to our results, the threshold voltage of column-like diamond FEAs and cone-shape diamond FEAs is about 10 V and 12V; the field emission current density is about 139 mA/cm2 (at Vgc=20V) and 98 mA/cm2 (at Vgc=50V) respectively. The electron field emission characteristics for the diamond field emitter array devices with different gate structure and tip morphology has a visible influence.