ITO電極上無電聚合聚苯胺膜及其在高分子發光二極體的應用

碩士 === 國立中央大學 === 化學研究所 === 88 === Combining the molecular self-assembly properties and thin film preparation technique, we are able to synthesize highly-density and more flat polyaniline (PANI) films by electroless surface chemistry polymerization. The substrates (ITO electrode) were first modifie...

Full description

Bibliographic Details
Main Author: 葉育睿
Other Authors: 吳春桂
Format: Others
Language:zh-TW
Published: 2000
Online Access:http://ndltd.ncl.edu.tw/handle/95727582914748941737
Description
Summary:碩士 === 國立中央大學 === 化學研究所 === 88 === Combining the molecular self-assembly properties and thin film preparation technique, we are able to synthesize highly-density and more flat polyaniline (PANI) films by electroless surface chemistry polymerization. The substrates (ITO electrode) were first modified with Aniline-contanining silane compound ( N-phenylaminopropyltrimethoxy- silane ) to from a monolayer organic molecular film. The deposition of PANI film was then carried out by contacting the monomer primed substrate with monomer and oxidant in acidic aqueous solution. Cyclic voltametry were used to characterize the electrochemical property and stability of these chemically polymerized PANI films. It was found that the PANI film prepared on Aniline primed substate have better electrochemical activity and stability. PANI film prepared with this method was used as a hole transport layer in polymeric organic light emitting diode (POLED) using MEH-PPV as an emitting layer and evaporated Al metal as a cathod. The structure (dopants) of PANI film will affect the operation Voltage of this bilayer device. The operation voltage is 7.5V when CSA doped PANI film was used as a hole transport layer. This voltage is 2V lower than the device without polyanilne hole transport layer test at the same environment. The luminance of this bi layer PLED, fabricated and test in an ambient atomosphere, is 140 cd/m²