Summary: | 碩士 === 國立中山大學 === 環境工程研究所 === 88 === Abstract
This research was to evaluate the treatment efficiency for in-situ treatment of pentachlorophenol (PCP) contaminated soil by electrokinetics-Fenton process combined with biodegradation. An electric gradient of 1V/cm, and graphite electrodes were employed in all experiments. Soil types, catalyst types and dosage, hydrogen peroxide concentration, cathode reservoir liquid species and reaction time were employed as the experimental factors in this study.
In this study, no matter electrokinetics-Fenton process or the electrokinetics-biodegradation in the latter, prolong the reaction time can promote the removal and destruction efficiency (DRE) of target pollutant from soil. By using 0.0196 M FeSO4 with 3.5% H2O2, the DRE was only lower 2% than 0.098 M FeSO4 with 3.5% H2O2.It showed that using 0.0196 M FeSO4 can provide enough Fe2+ to react with H2O2.
By increasing H2O2 concentration from 0.35% to 3.5%, a DRE rised from 68.34% to 79.77%. When iron powder was used as catalyst, the residual pentachloroplenol concentration near to anode reservoir lower than 0.0196 M FeSO4 was used. But the DRE was 56.58% lower than the 68.34% of using 0.0196 M FeSO4.As the influences of soil types to electrokinetics-Fenton process, the residual concentration of pollutant for Soil No. 2 was higher than Soil No. 1. A DRE of only 59.22% was obtained. It is postulated that a much higher content of organic matter with Soil No. 2 whereas lower the treatment efficiency because of consumption of hydroxyl radicals by the organic matter of soil. For the influence of different reservoir liquid species, in this study 0.1M acetic buffer solution was used as cathode reservoir liquid, expected to promote the removal efficiency. From the result of experiment that could not reach the expected treatment efficiency of increasing the removal efficiency from soil. From the experiment of electrokinetics process combined with cometabolism, a treatment efficiency of only 25.67% was obtained. The content of pollutant within every section of soil column were still higher than predict. But by using electrokinetics-Fenton process to pretreat the pollutant within soil first, the increasing efficiency of biodegradation was found. Even when reaction time was prolonged, the pollutant could be completely eliminated from soil. If only used iron minerals to proceed electrokinetics-Fenton process naturally exited in the soil, a DRE of only 20��30% was obtained. The DRE of Soil No. 2 was higher with more iron content in soil to produce more hydroxyl radicals to destroy pollutant.
|