Summary: | 碩士 === 國立中山大學 === 海洋地質及化學研究所 === 89 === This study utilized, for the first time, the d18Osw as a tracer to investigate the seasonal variations of circulation in the Taiwan Strait (TS), which is the predominant sea passage with an average depth of 60 m connecting the East China Sea (ECS) and the South China Sea (SCS). The result shows that the circulation system in TS is mainly influenced by the inter-mixing among the China Coastal Water (CCW), the SCS water (SCSW), and the Kuroshio Water (KW). In spring, the KW dominates in TS, whereas the CCW is still observed in northwest TS. During the summer, SCSW replaces the KW and becomes the major water type in the TS, yet the KW is found to be restricted in the southwest part and the bottom of the TS. Due to the larger discharge from rivers (mainly the Yangtz River), the CCW has a more extensive distribution in the TS in summer than other seasons. In fall and winter, the CCW occupies the northern part of TS due to the stronger northeastern monsoon which limits the intrusion of the KW through the Luzon Strait to the northern TS. The two distinct water types inevitably form a front in the central TS.
The hydrographic variations at Penghu Channel (PHC) were also explored in this study. The d18Osw indicates that the perennial intrusion of the KW into the PHC is varying throughout different seasons. This intrusion is found strongest in fall and winter. In summer, the upper layer of PHC is occupied chiefly by SCSW, while the KW remains at the bottom layer in PHC.
By including an additional inflow of 0.5Sv from TS to ECS, this study further reconstructed a box model of the ECS, which was previously furnished by Lin(1999). The new estimates suggest that ~0.38*104 km3/year of the Kuroshio surface water (0-50m) and ~1.54*104 km3/year of the upwelled Kuroshio subsurface water (50-150m) are transported to the ECS, while ~3.83*104 km3/year of the ECS water are exported to the western Pacific Ocean.
|