Efficient Minus Domination Problem on Block Graphs

碩士 === 國立中正大學 === 資訊工程研究所 === 91 === A three-valued function $f$ defined on the vertices of a graph $G = (V, E)$, $f : V \rightarrow \{-1, 0, 1\}$, is an efficient minus dominating function if the sum of its function values over any closed neighborhood equ...

Full description

Bibliographic Details
Main Authors: Yung-Li Chang, 張永立
Other Authors: Maw-Shang Chang
Format: Others
Language:en_US
Published: 2003
Online Access:http://ndltd.ncl.edu.tw/handle/51308210507211991009
id ndltd-TW-091CCU00392050
record_format oai_dc
spelling ndltd-TW-091CCU003920502016-06-24T04:15:34Z http://ndltd.ncl.edu.tw/handle/51308210507211991009 Efficient Minus Domination Problem on Block Graphs 區塊圖上之有效負支配集問題研究 Yung-Li Chang 張永立 碩士 國立中正大學 資訊工程研究所 91 A three-valued function $f$ defined on the vertices of a graph $G = (V, E)$, $f : V \rightarrow \{-1, 0, 1\}$, is an efficient minus dominating function if the sum of its function values over any closed neighborhood equals to one. That is, for every $v \in V$, $\sum_{u \in N[v]}f(u) = 1$, where $N[v]$ consists of $v$ and all vertices adjacent to $v$. The sum of the function values of all vertices is called the weight of $f$. The efficient minus domination problem is to find the efficient minus dominating function of $G$ of minimum weight. This problem is NP-complete for general graphs. In this paper, we present an $O(\Delta^4 n)$ algorithm to solve this problem on block graphs where $\Delta$ is the maximum degree of $G$. Maw-Shang Chang 張貿翔 2003 學位論文 ; thesis 24 en_US
collection NDLTD
language en_US
format Others
sources NDLTD
description 碩士 === 國立中正大學 === 資訊工程研究所 === 91 === A three-valued function $f$ defined on the vertices of a graph $G = (V, E)$, $f : V \rightarrow \{-1, 0, 1\}$, is an efficient minus dominating function if the sum of its function values over any closed neighborhood equals to one. That is, for every $v \in V$, $\sum_{u \in N[v]}f(u) = 1$, where $N[v]$ consists of $v$ and all vertices adjacent to $v$. The sum of the function values of all vertices is called the weight of $f$. The efficient minus domination problem is to find the efficient minus dominating function of $G$ of minimum weight. This problem is NP-complete for general graphs. In this paper, we present an $O(\Delta^4 n)$ algorithm to solve this problem on block graphs where $\Delta$ is the maximum degree of $G$.
author2 Maw-Shang Chang
author_facet Maw-Shang Chang
Yung-Li Chang
張永立
author Yung-Li Chang
張永立
spellingShingle Yung-Li Chang
張永立
Efficient Minus Domination Problem on Block Graphs
author_sort Yung-Li Chang
title Efficient Minus Domination Problem on Block Graphs
title_short Efficient Minus Domination Problem on Block Graphs
title_full Efficient Minus Domination Problem on Block Graphs
title_fullStr Efficient Minus Domination Problem on Block Graphs
title_full_unstemmed Efficient Minus Domination Problem on Block Graphs
title_sort efficient minus domination problem on block graphs
publishDate 2003
url http://ndltd.ncl.edu.tw/handle/51308210507211991009
work_keys_str_mv AT yunglichang efficientminusdominationproblemonblockgraphs
AT zhāngyǒnglì efficientminusdominationproblemonblockgraphs
AT yunglichang qūkuàitúshàngzhīyǒuxiàofùzhīpèijíwèntíyánjiū
AT zhāngyǒnglì qūkuàitúshàngzhīyǒuxiàofùzhīpèijíwèntíyánjiū
_version_ 1718322683174715392