Efficient Minus Domination Problem on Block Graphs
碩士 === 國立中正大學 === 資訊工程研究所 === 91 === A three-valued function $f$ defined on the vertices of a graph $G = (V, E)$, $f : V \rightarrow \{-1, 0, 1\}$, is an efficient minus dominating function if the sum of its function values over any closed neighborhood equ...
Main Authors: | , |
---|---|
Other Authors: | |
Format: | Others |
Language: | en_US |
Published: |
2003
|
Online Access: | http://ndltd.ncl.edu.tw/handle/51308210507211991009 |
id |
ndltd-TW-091CCU00392050 |
---|---|
record_format |
oai_dc |
spelling |
ndltd-TW-091CCU003920502016-06-24T04:15:34Z http://ndltd.ncl.edu.tw/handle/51308210507211991009 Efficient Minus Domination Problem on Block Graphs 區塊圖上之有效負支配集問題研究 Yung-Li Chang 張永立 碩士 國立中正大學 資訊工程研究所 91 A three-valued function $f$ defined on the vertices of a graph $G = (V, E)$, $f : V \rightarrow \{-1, 0, 1\}$, is an efficient minus dominating function if the sum of its function values over any closed neighborhood equals to one. That is, for every $v \in V$, $\sum_{u \in N[v]}f(u) = 1$, where $N[v]$ consists of $v$ and all vertices adjacent to $v$. The sum of the function values of all vertices is called the weight of $f$. The efficient minus domination problem is to find the efficient minus dominating function of $G$ of minimum weight. This problem is NP-complete for general graphs. In this paper, we present an $O(\Delta^4 n)$ algorithm to solve this problem on block graphs where $\Delta$ is the maximum degree of $G$. Maw-Shang Chang 張貿翔 2003 學位論文 ; thesis 24 en_US |
collection |
NDLTD |
language |
en_US |
format |
Others
|
sources |
NDLTD |
description |
碩士 === 國立中正大學 === 資訊工程研究所 === 91 === A three-valued function $f$ defined on the vertices of a graph $G
= (V, E)$, $f : V \rightarrow \{-1, 0, 1\}$, is an efficient minus
dominating function if the sum of its function values over any
closed neighborhood equals to one. That is, for every $v \in V$,
$\sum_{u \in N[v]}f(u) = 1$, where $N[v]$ consists of $v$ and all
vertices adjacent to $v$. The sum of the function values of all
vertices is called the weight of $f$. The efficient minus
domination problem is to find the efficient minus dominating
function of $G$ of minimum weight. This problem is NP-complete for
general graphs. In this paper, we present an $O(\Delta^4 n)$
algorithm to solve this problem on block graphs where $\Delta$ is
the maximum degree of $G$.
|
author2 |
Maw-Shang Chang |
author_facet |
Maw-Shang Chang Yung-Li Chang 張永立 |
author |
Yung-Li Chang 張永立 |
spellingShingle |
Yung-Li Chang 張永立 Efficient Minus Domination Problem on Block Graphs |
author_sort |
Yung-Li Chang |
title |
Efficient Minus Domination Problem on Block Graphs |
title_short |
Efficient Minus Domination Problem on Block Graphs |
title_full |
Efficient Minus Domination Problem on Block Graphs |
title_fullStr |
Efficient Minus Domination Problem on Block Graphs |
title_full_unstemmed |
Efficient Minus Domination Problem on Block Graphs |
title_sort |
efficient minus domination problem on block graphs |
publishDate |
2003 |
url |
http://ndltd.ncl.edu.tw/handle/51308210507211991009 |
work_keys_str_mv |
AT yunglichang efficientminusdominationproblemonblockgraphs AT zhāngyǒnglì efficientminusdominationproblemonblockgraphs AT yunglichang qūkuàitúshàngzhīyǒuxiàofùzhīpèijíwèntíyánjiū AT zhāngyǒnglì qūkuàitúshàngzhīyǒuxiàofùzhīpèijíwèntíyánjiū |
_version_ |
1718322683174715392 |