A Low Voltage, Variable Gain Design for Low Noise Amplifier

碩士 === 長庚大學 === 電子工程研究所 === 92 === In the thesis, an integrated RF circuit topology that can be used to realize low voltage ( i.e. 1V ) low noise amplifier is presented. The design technique based on a narrowband LC-folded cascode topology is proposed for low voltage RF integrated circuits. B...

Full description

Bibliographic Details
Main Authors: Chia-Cheng Hung, 洪家正
Other Authors: Wu-Shiung Feng
Format: Others
Language:en_US
Published: 2004
Online Access:http://ndltd.ncl.edu.tw/handle/15654715837525270170
Description
Summary:碩士 === 長庚大學 === 電子工程研究所 === 92 === In the thesis, an integrated RF circuit topology that can be used to realize low voltage ( i.e. 1V ) low noise amplifier is presented. The design technique based on a narrowband LC-folded cascode topology is proposed for low voltage RF integrated circuits. Based on a LC-folded cascode LNA topology, it is implemented with a modified LC-folded cascode LNA configuration using two common source transistors to improve linearity. The linearity is improved about 2 to 3 dB. On LC-folded cascode topology, another merit that only increases in the LNA circuit complexity is an extra gain control signal, Vtune. Gain variation is achieved by controlling the Vtune, hence adjusting the overall gain of the LNA without affecting the input noise and impedance matching. The technique is applied to the design of a proposed LNA operating at 2.4 GHz using a TSMC 0.18 μm mixed signal ( 1P6M ) CMOS technology. A low voltage, variable gain design for low noise amplifier is fully on chip between input and output. The proposed LNA chip achieves measured results of 11.14 dB for power gain, 3.981 dB for noise figure, the input and output return loss of -26.06 dB and -6.827 dB, the 1-dB compression point and IIP3 of -14 dBm and -5 dBm, respectively. The circuit has 10 dB of gain tuning, and can operate at a low supply voltage of 1 V.